CSE 311: Foundations of Computing

Lecture 17: Recursively Defined Sets & Structural Induction

Midterm

- Monday, May 13th in class
- Closed book, closed notes
 - will include inference rules & equivalences if helpful
 - expect you remember congruence, divides, inverse, etc.
- Covers material up to end of ordinary induction.
- Practice problems & midterm on the website
- TA-led review session: Saturday, May 11th, 2-4 pm in SMI 120

Midterm

- 5 problems covering:
 - Logic / English translation
 - Boolean circuits, algebra, and normal forms
 - Solving modular equations
 - Induction
 - Modular arithmetic
 - Set theory
 - English proofs

Natural numbersBasis: $0 \in S$ Recursive:If $x \in S$, then $x+1 \in S$

Even numbers

Basis: $0 \in S$ Recursive:If $x \in S$, then $x+2 \in S$

Recursive definition of set S

- Basis Step: $0 \in S$
- Recursive Step: If $x \in S$, then $x + 2 \in S$
- Exclusion Rule: Every element in S follows from the basis step and a finite number of recursive steps.

We need the exclusion rule because otherwise $S=\mathbb{N}$ would satisfy the other two parts. However, we won't always write it down on these slides.

Natural numbersBasis: $0 \in S$ Recursive:If $x \in S$, then $x+1 \in S$

Even numbers

Basis: $0 \in S$ Recursive:If $x \in S$, then $x+2 \in S$

Powers of 3: Basis: $1 \in S$ Recursive: If $x \in S$, then $3x \in S$.

Basis: $[0, 0] \in S, [1, 1] \in S$ Recursive: If [n-1, x] ∈ S and [n, y] ∈ S, then [n+1, x + y] ∈ S.

?

Natural numbersBasis: $0 \in S$ Recursive:If $x \in S$, then $x+1 \in S$

Even numbers

Basis: $0 \in S$ Recursive:If $x \in S$, then $x+2 \in S$

Powers of 3: Basis: $1 \in S$ Recursive: If $x \in S$, then $3x \in S$.

Basis: $[0, 0] \in S, [1, 1] \in S$ Recursive: If [n-1, x] ∈ S and [n, y] ∈ S, Fibonacci numbers then [n+1, x + y] ∈ S.

- An alphabet Σ is any finite set of characters
- The set Σ* of strings over the alphabet Σ is defined by
 - Basis: $\varepsilon \in \Sigma^*$ (ε is the empty string w/ no chars)
 - **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Palindromes are strings that are the same backwards and forwards

Basis:

 ϵ is a palindrome and any $a \in \Sigma$ is a palindrome

Recursive step:

If p is a palindrome then apa is a palindrome for every $a \in \Sigma$

All Binary Strings with no 1's before 0's

All Binary Strings with no 1's before 0's

Basis: $\epsilon \in S$ Recursive: If $x \in S$, then $0x \in S$ If $x \in S$, then $x1 \in S$

Functions on Recursively Defined Sets (on Σ^*)

Length: $len(\varepsilon) = 0$ len(wa) = 1 + len(w) for $w \in \Sigma^*$, $a \in \Sigma$

Concatenation:

$$x \bullet \varepsilon = x \text{ for } x \in \Sigma^*$$

 $x \bullet wa = (x \bullet w)a \text{ for } x \in \Sigma^*, a \in \Sigma$

Reversal:

$$\varepsilon^{R} = \varepsilon$$

(wa)^R = a • w^R for w $\in \Sigma^{*}$, a $\in \Sigma$

Number of c's in a string:

$$\begin{aligned} \#_{c}(\varepsilon) &= 0 \\ \#_{c}(wc) &= \#_{c}(w) + 1 \text{ for } w \in \Sigma^{*} \\ \#_{c}(wa) &= \#_{c}(w) \text{ for } w \in \Sigma^{*}, a \in \Sigma, a \neq c \end{aligned}$$

- Basis:
 is a rooted binary tree
- Recursive step:

Defining Functions on Rooted Binary Trees

• size(•) = 1

• size
$$\left(\begin{array}{c} & & \\ &$$

• height(•) = 0

• height
$$\left(\begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\$$

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Conclude that $\forall x \in S, P(x)$

Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of structural induction:

Recursive definition of \mathbb{N} **Basis:** $0 \in \mathbb{N}$ **Recursive step:** If $k \in \mathbb{N}$ then $k + 1 \in \mathbb{N}$

Structural induction follows from ordinary induction:

Define Q(n) to be "for all $x \in S$ that can be constructed in at most n recursive steps, P(x) is true."

- Let *S* be given by...
 - **Basis:** $6 \in S$; $15 \in S$;
 - **Recursive:** if $x, y \in S$ then $x + y \in S$.

1. Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.

Basis: $6 \in S$; $15 \in S$; **Recursive:** if $x, y \in S$ then $x + y \in S$

- **1.** Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true

Basis: $6 \in S$; $15 \in S$; **Recursive:** if $x, y \in S$ then $x + y \in S$

- **1.** Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$

4. Inductive Step: Goal: Show P(x+y)

Basis: $6 \in S$; $15 \in S$;

Recursive: if $x, y \in S$ then $x + y \in S$

- **1.** Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$
- **4. Inductive Step:** Goal: Show P(x+y)

Since P(x) is true, 3 | x and so x=3m for some integer m and since P(y) is true, 3 | y and so y=3n for some integer n. Therefore x+y=3m+3n=3(m+n) and thus 3 | (x+y). Hence P(x+y) is true.

5. Therefore by induction 3 | x for all $x \in S$.

Basis: $6 \in S$; $15 \in S$; **Recursive:** if $x, y \in S$ then $x + y \in S$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let $a \in \Sigma$. Let $x \in \Sigma^*$. Then $len(x \bullet wa) = len((x \bullet w)a)$ by defn of \bullet

= len(x•w)+1 by defn of len

= len(x)+len(w)+1 **by I.H.**

= len(x)+len(wa) by defn of len

Therefore len(x•wa)= len(x)+len(wa) for all $x \in \Sigma^*$, so P(wa) is true.

So, by induction $len(x \bullet y) = len(x) + len(y)$ for all $x, y \in \Sigma^*$

1. Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .
- 4. Inductive Step:

Goal: Prove P(

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .

5. So, the P(T) is true for all rooted bin. trees by structural induction.