CSE 311: Foundations of Computing

Lecture 17: Recursively Defined Sets &

Structural Induction
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Midterm

* Monday, May 13th in class

 Closed book, closed notes
— will include inference rules & equivalences if helpful
— expect you remember congruence, divides, inverse, etc.

* Covers material up to end of ordinary induction.

* Practice problems & midterm on the website

* TA-led review session:
Saturday, May 11th, 2-4 pm in SMI 120



Midterm

* 5 problems covering:
— Logic / English translation
— Boolean circuits, algebra, and normal forms
— Solving modular equations
— Induction
— Modular arithmetic
— Set theory
— English proofs



Recursive Definitions of Sets

Natural numbers
Basis: 0€eS

Recursive: If x €S, thenx+t1 €S

Even numbers
Basis: 0O€eS
Recursive: If X €S, then x+2 €S



Recursive Definition of Sets

Recursive definition of set S

 Basis Step: 0 €S
 Recursive Step: If xe S, thenx+2 €S

* Exclusion Rule: Every element in S follows from
the basis step and a finite number of recursive

steps.

We need the exclusion rule because otherwise

S=N would satisfy the other two parts. However,
we won’t always write it down on these slides.



Recursive Definitions of Sets

Natural numbers

Basis: 0eS
Recursive: If x €S, thenx+t1 €S

Even numbers
Basis: 0esS

Recursive: If X €S, then x+2 €S

Powers of 3:

Basis: 1 €S
Recursive: If X € S, then 3x € S.

Basis: [0,0]€S,[1,1]€S
Recursive: If [n-1,x] €S and[n,y] €S,
then [n+1,x +y] €S.



Recursive Definitions of Sets

Natural numbers

Basis: 0eS
Recursive: If x €S, thenx+t1 €S

Even numbers
Basis: 0esS

Recursive: If X €S, then x+2 €S

Powers of 3:

Basis: 1 €S
Recursive: If X € S, then 3x € S.

Basis: [0,0]€S,[1,1]€S
Recursive: If [n-1,x] €S and[n,y] €S,
then [n+1,x +y] €S.

Fibonacci numbers



Strings

* An alphabet X is any finite set of characters

* The set 2* of strings over the alphabet X is
defined by

—Basis: e € X (e Is the empty string w/ no chars)
— Recursive: ifw € 2*,a € 2, thenwa € 2*



Palindromes

Palindromes are strings that are the same
backwards and forwards

Basis:
e Is a palindrome and any a € X is a palindrome

Recursive step:
If p is a palindrome then apa is a palindrome for
every a € 2



All Binary Strings with no 1’s before O’s




All Binary Strings with no 1’s before O’s

Basis:
EES

Recursive:
If x €S, thenOx €S
If x €S, thenx1 €S



Functions on Recursively Defined Sets (on X%)

Length:
len(e) =0
len(wa)=1+len(w)forw eX* aeX

Concatenation:
xec=xforxe X"
xewa=(xew)laforxeX* aeX

Reversal:
eR=¢g
(Wa)R=aewRforweX* aeX

Number of c¢’s in a string:
#(g)=0
# (wc)=#(w)+1forweX”
# (wa)=#.(w)forweX*,aeX azc



Rooted Binary Trees

* Basis: .
* Recursive step:

is a rooted binary tree



Defining Functions on Rooted Binary Trees

A,‘
L X 3

.
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.
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=1 + size(T,) + size(T,)

)=1 + max{height(T,), height(T,)}



Structural Induction

How to prove V x € S, P(x) is true:

Base Case: Show that P(u) is true for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that V x € S, P(x)



Structural Induction

______________________

How to prove V x € S, P(x) is true;

...........

............

Base Case: /%w that P(u) is true/for all specific
elements u of S mentioned in the [Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step@ove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that V x € S, P(x)



Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of
structural induction:
Recursive definition of N
Basis: 0 €N
Recursive step: If ke Nthenk +1€N

Structural induction follows from ordinary

induction:

Define Q(n) to be “for all x € S that can be
constructed in at most
n recursive steps, P(x) is true.”



Using Structural Induction

 Let S be given by...
—Basis: 6e¢S5; 15€ S:
— Recursive: if x,y € S thenx +y € S.

Claim: Every element of S is divisible by 3.



Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

Basis: 6 €S; 15 € §;
Recursive: if x,y €S thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

Basis: 6 €S; 15 € §;
Recursive: if x,y €S thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y €S

4. Inductive Step: |Goal: Show P(x+y)

Basis: 6 €S; 15 € §;
Recursive: if x,y €S thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y €S

4. Inductive Step: |Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.
Therefore x+y=3m+3n=3(m+n) and thus 3| (x+y).

Hence P(x+y) is true.
5. Therefore by induction 3|x for all x € S.

Basis: 6 €S; 15 € §;
Recursive: if x,y €S thenx+y €S




Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) forall x e X* " .
We prove P(y) for all y € X* by structural induction.



Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) forall x e X* " .
We prove P(y) for all y € X* by structural induction.

Base Case (y=¢): Let x € X* be arbitrary. Then, len(x ¢ €) = len(x) =
len(x) + len(€) since len(g)=0. Since x was arbitrary, P(g) holds.



Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) forall x e X* " .
We prove P(y) for all y € X* by structural induction.

Base Case (y=¢): Let x € X* be arbitrary. Then, len(x ¢ €) = len(x) =
len(x) + len(€) since len(g)=0. Since x was arbitrary, P(g) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
wE X"

Inductive Step: |Goal: Show that P(wa) is true for everya € X




Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) forall x e X* " .
We prove P(y) for all y € X* by structural induction.

Base Case (y=¢): Let x € X* be arbitrary. Then, len(x ¢ €) = len(x) =
len(x) + len(€) since len(g)=0. Since x was arbitrary, P(g) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
wE X"

Inductive Step: |Goal: Show that P(wa) is true for everya € X

Leta € X. Letx € X*. Then len(xewa) = len((x®w)a) by defn of e
= len(xew)+1 by defn of len
= len(x)+len(w)+1 by I.H.
= len(x)+len(wa) by defn of len

Therefore len(xewa)= len(x)+len(wa) for all x € X*, so P(wa) is true.

So, by induction len(xey) = len(x) + len(y) for all x,y € X*



Claim: For every rooted binary tree T, size(T) < 2height(M+1_1




Claim: For every rooted binary tree T, size(T) < 2height(M+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1”"_ We prove P(T) for all rooted binary
trees T by structural induction.



Claim: For every rooted binary tree T, size(T) < 2height(M+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1”"_ We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(*®)=1, height(®)=0, and 2°+1-1=21-1=1 so P(e) is true.



Claim: For every rooted binary tree T, size(T) < 2height(T) +

1. Let P(T) be “size(T) < 2heieht(M+1-1”"_ We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°+1-1=21-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,.

4. Inductive Step: Goal: Prove P( £ )_‘




Claim: For every rooted binary tree T, size(T) < 2height(T) +

1. Let P(T) be “size(T) < 2heieht(M+1-1”"_ We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(*®)=1, height(®)=0, and 2°+1-1=21-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T,and T,.

4. Inductive Step Goal: Prove P( : )_‘

................

................

by IH for T, and T,

< 7height(T1)+14 Dheight(T)+1_1
< 2(2maX(height(Tl),height(Tz))+1) 1

< 2(2heigntl £ 3 ))—1 < 2height( £ 3 1+l _1

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.



