CSE 311: Foundations of Computing

Lecture 17: Recursively Defined Sets \& Structural Induction

Midterm

- Monday, May 13th in class
- Closed book, closed notes
- will include inference rules \& equivalences if helpful
- expect you remember congruence, divides, inverse, etc.
- Covers material up to end of ordinary induction.
- Practice problems \& midterm on the website
- TA-led review session:

Saturday, May 11th, 2-4 pm in SMI 120

Midterm

- 5 problems covering:
- Logic / English translation
- Boolean circuits, algebra, and normal forms
- Solving modular equations
- Induction
- Modular arithmetic
- Set theory
- English proofs

Recursive Definitions of Sets

Natural numbers
Basis:
$0 \in S$
Recursive: If $x \in S$, then $x+1 \in S$

Even numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+2 \in S$

Recursive Definition of Sets

Recursive definition of set S

- Basis Step: $0 \in S$
- Recursive Step: If $x \in S$, then $x+2 \in S$
- Exclusion Rule: Every element in S follows from the basis step and a finite number of recursive steps.

We need the exclusion rule because otherwise $\mathrm{S}=\mathbb{N}$ would satisfy the other two parts. However, we won't always write it down on these slides.

Recursive Definitions of Sets

Natural numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+1 \in S$
Even numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+2 \in S$

Powers of 3:
Basis: $1 \in S$
Recursive: If $x \in S$, then $3 x \in S$.
Basis: $\quad[0,0] \in S,[1,1] \in S$
Recursive: If $[n-1, x] \in S$ and $[n, y] \in S$, then $[n+1, x+y] \in S$.

Recursive Definitions of Sets

Natural numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+1 \in S$

Even numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+2 \in S$

Powers of 3:
Basis: $1 \in S$
Recursive: If $x \in S$, then $3 x \in S$.
Basis: $\quad[0,0] \in S,[1,1] \in S$
Recursive: If $[n-1, x] \in S$ and $[n, y] \in S$,
Fibonacci numbers then $[n+1, x+y] \in S$.

Strings

- An alphabet Σ is any finite set of characters
- The set Σ^{*} of strings over the alphabet Σ is defined by
- Basis: $\varepsilon \in \Sigma^{*}$ (ε is the empty string $w /$ no chars)
- Recursive: if $w \in \Sigma^{\star}, a \in \Sigma$, then $w a \in \Sigma^{*}$

Palindromes

Palindromes are strings that are the same backwards and forwards

Basis:

ε is a palindrome and any $a \in \Sigma$ is a palindrome

Recursive step:
If p is a palindrome then $a p a$ is a palindrome for every $a \in \Sigma$

All Binary Strings with no 1's before 0's

Basis:
$\varepsilon \in S$
Recursive:
If $x \in S$, then $0 x \in S$
If $x \in S$, then $x 1 \in S$

Functions on Recursively Defined Sets (on Σ^{*})

Length:

$$
\begin{aligned}
& \operatorname{len}(\varepsilon)=0 \\
& \operatorname{len}(\mathrm{wa})=1+\operatorname{len}(\mathrm{w}) \text { for } w \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Concatenation:

$$
\begin{aligned}
& x \bullet \varepsilon=x \text { for } x \in \Sigma^{*} \\
& x \bullet w a=(x \bullet w) \text { for } x \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Reversal:

$$
\begin{aligned}
& \varepsilon^{R}=\varepsilon \\
& (\mathrm{wa})^{R}=\mathrm{a} \cdot \mathrm{w}^{\mathrm{R}} \text { for } \mathrm{w} \in \Sigma^{*}, \mathrm{a} \in \boldsymbol{\Sigma}
\end{aligned}
$$

Number of c's in a string:

$$
\begin{aligned}
& \#_{c}(\varepsilon)=0 \\
& \#_{c}(w c)=\#_{c}(w)+1 \text { for } w \in \Sigma^{*} \\
& \#_{c}(w a)=\#_{c}(w) \text { for } w \in \Sigma^{*}, a \in \Sigma, a \neq c
\end{aligned}
$$

Rooted Binary Trees

- Basis:
- is a rooted binary tree
- Recursive step:

Defining Functions on Rooted Binary Trees

- $\operatorname{size}(\bullet)=1$

- height(\cdot) = 0

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:
Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:
Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step. Prove that $P(w)$ holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of structural induction:

Recursive definition of \mathbb{N}
Basis: $0 \in \mathbb{N}$
Recursive step: If $k \in \mathbb{N}$ then $k+1 \in \mathbb{N}$

Structural induction follows from ordinary induction:

Define $Q(n)$ to be "for all $x \in S$ that can be constructed in at most n recursive steps, $P(x)$ is true."

Using Structural Induction

- Let S be given by...
- Basis: $6 \in S$; $15 \in S$;
- Recursive: if $x, y \in S$ then $x+y \in S$.

Claim: Every element of S is divisible by 3 .

Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: Every element of S is divisible by 3 .

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$
4. Inductive Step: Goal: Show $P(x+y)$

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: Every element of S is divisible by 3 .

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$
4. Inductive Step: Goal: Show $P(x+y)$

Since $P(x)$ is true, $3 \mid x$ and so $x=3 m$ for some integer m and since $P(y)$ is true, $3 \mid y$ and so $y=3 n$ for some integer n.
Therefore $x+y=3 m+3 n=3(m+n)$ and thus $3 \mid(x+y)$.
Hence $P(x+y)$ is true.
5. Therefore by induction $3 \mid x$ for all $x \in S$.

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: $\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $\mathrm{P}(\mathrm{y})$ be "len $(\mathrm{x} \bullet \mathrm{y})=\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{y})$ for all $\mathrm{x} \in \Sigma^{* *}$. We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.

Claim: $\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $P(y)$ be "len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x \in \Sigma^{* "}$.
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Base Case $(y=\varepsilon)$: Let $x \in \Sigma^{*}$ be arbitrary. Then, len $(x \cdot \varepsilon)=\operatorname{len}(x)=$ len $(x)+\operatorname{len}(\varepsilon)$ since $\operatorname{len}(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Claim: $\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $\mathrm{P}(\mathrm{y})$ be "len $(\mathrm{x} \cdot \mathrm{y})=\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{y})$ for all $\mathrm{x} \in \Sigma^{* *}$.
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Base Case $(y=\varepsilon)$: Let $x \in \Sigma^{*}$ be arbitrary. Then, len $(x \bullet \varepsilon)=\operatorname{len}(x)=$ len $(x)+\operatorname{len}(\varepsilon)$ since len $(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that $\mathrm{P}(\mathrm{w})$ is true for some arbitrary $w \in \Sigma^{*}$
Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{wa})$ is true for every a $\in \Sigma$

Claim: len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $\mathrm{P}(\mathrm{y})$ be "len $(\mathrm{x} \cdot \mathrm{y})=\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{y})$ for all $\mathrm{x} \in \Sigma^{* *}$.
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Base Case $(y=\varepsilon)$: Let $x \in \Sigma^{*}$ be arbitrary. Then, len $(x \bullet \varepsilon)=\operatorname{len}(x)=$ len $(x)+\operatorname{len}(\varepsilon)$ since len $(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that $\mathrm{P}(\mathrm{w})$ is true for some arbitrary $w \in \Sigma^{*}$
Inductive Step: Goal: Show that $P(w a)$ is true for every a $\in \Sigma$
Let $a \in \Sigma$. Let $x \in \Sigma^{*}$. Then len $(x \bullet w a)=\operatorname{len}((x \bullet w) a)$ by defn of \bullet

$$
\begin{aligned}
& =\operatorname{len}(x \cdot w)+1 \text { by defn of len } \\
& =\operatorname{len}(x)+\operatorname{len}(w)+1 \text { by I.H. } \\
& =\operatorname{len}(x)+\operatorname{len}(w a) \text { by defn of len }
\end{aligned}
$$

Therefore len $(x \cdot w a)=$ len $(x)+\operatorname{len}(w a)$ for all $x \in \Sigma^{*}$, so $P(w a)$ is true.
So, by induction len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Claim: For every rooted binary tree $\mathbf{T}, \operatorname{size}(\mathbf{T}) \leq 2^{\text {height }(T)+1}-1$

Claim: For every rooted binary tree $\mathbf{T}, \operatorname{size}(\mathbf{T}) \leq 2^{\text {height }(\mathbf{T})+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.

Claim: For every rooted binary tree $\mathbf{T}, \operatorname{size}(\mathbf{T}) \leq 2^{\text {height }(\mathbf{T})+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: $\operatorname{size}(\bullet)=1$, height $(\bullet)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.

Claim: For every rooted binary tree $T, \operatorname{size}(T) \leq 2^{\text {height }(T)+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: $\operatorname{size}(\bullet)=1$, height $(\cdot)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some
4. Inductive Step: rooted binary trees T_{1} and T_{2}. Goal: Prove $P(\widehat{A})$.

Claim: For every rooted binary tree \mathbf{T}, size $(\mathbf{T}) \leq 2^{\text {height }(T)+1}-1$

1. Let $P(T)$ be " $\operatorname{size}(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: $\operatorname{size}(\bullet)=1$, height $(\bullet)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\bullet)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some
4. Inductive Step: By defn, $\operatorname{size}(\widehat{\text { A. }})=1+\operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right)$

$$
\begin{array}{r}
\leq 1+2^{\text {height }\left(\mathbf{T}_{\mathbf{1}}\right)+1}-1+2^{\text {height }\left(\mathbf{T}_{\mathbf{2}}\right)+1}-1 \\
\text { by IH for } \mathbf{T}_{1} \text { and } \mathbf{T}_{2}
\end{array}
$$

$$
\leq 2^{\text {height }\left(\mathbf{T}_{1}\right)+1}+2^{\text {height }\left(T_{2}\right)+1}-1
$$

$$
\leq 2\left(2^{\max \left(\operatorname{height}\left(T_{1}\right), \text { height }\left(T_{2}\right)\right)+1}\right)-1
$$

$$
\leq 2\left(2^{\text {height }(\widehat{A})}\right)-1 \leq 2^{\text {height }(\widehat{A})+1}-1
$$

which is what we wanted to show.
5. So, the $P(T)$ is true for all rooted bin. trees by structural induction.

