CSE 311: Foundations of Computing

Lecture 16: Recursion & Strong Induction
Applications: Fibonacci & Euclid




Last time: recursive definitions of functions

e F(0)=0;, Fn+1)=FMn)+1foralln = 0.
c G(0O)=1, Gn+1)=2-G(n)foralln = 0.

e 0!l=1, (n+1D)!=Mm+1)-n! foralln= 0.

« H0)=1; Hn+1) =250 foralln > 0.



More Recursive Definitions

Suppose that hi: N — R.

Then we have familiar summation notation:
_o h() = h(0)
znﬂ h(i) = h(n+1) + X%, h(i) forn =0

There is also product notation:
—o h(i) = h(0)
l_["+1 h(i)=h(n+ 1) -[[iLoh@i) forn =0



Fibonacci Numbers

fo=0
fi=1
fn=Jn-1+ fn_p foralln = 2




Strong Inductive Proofs In 5 Easy Steps

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by strong induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:
Assume that for some arbitrary integer k = b,
P(j) is true for every integer j from b to k”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using IL.H. (that P(b), ..., P(k) are true)
and point out where you are using it.
(Don’t assume P(k + 1) 1))

5. “Conclusion: P(n) is true for all integers n = b”



Bounding Fibonacci l: f,, < 2" foralln = 0

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Bounding Fibonacci l: f,, < 2" foralln = 0

1. Let P(n) be “f, <2"”. We prove that P(n) is true for all
integers n > 0 by strong induction.

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Bounding Fibonacci l: f,, < 2" foralln = 0

1. Let P(n) be “f, <2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,=0< 1=2° so P(0) is true.

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Bounding Fibonacci l: f,, < 2" foralln = 0

1. Let P(n) be “f, <2"”. We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,=0< 1=2° so P(0) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2! for every integer j from 0 to k.

W

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Bounding Fibonacci l: f,, < 2" foralln = 0

1.

W N

Let P(n) be “f, <2"”. We prove that P(n) is true for all
integers n > 0 by strong induction.

Base Case: f,=0 < 1= 2° so P(0) is true.

Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2! for every integer j from 0 to k.

Inductive Step:| Goal: Show P(k+1); that is, f,,, < 2+

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Bounding Fibonacci l: f,, < 2" foralln = 0

1.

W N

Let P(n) be “f, <2"”. We prove that P(n) is true for all
integers n > 0 by strong induction.

Base Case: f,=0 < 1= 2° so P(0) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2/ for every integer j from O to k.

Inductive Step:| Goal: Show P(k+1); that is, f,,, < 2+
Case k+1 =1:
Case k+1 > 2:

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Bounding Fibonacci l: f,, < 2" foralln = 0

1. Let P(n) be “f, <2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

Base Case: f,=0 < 1= 2° so P(0) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2/ for every integer j from O to k.

4. Inductive Step:| Goal: Show P(k+1); that is, f,,, < 2%
Case k+1 =1: Thenf,=1<2=2!so0 P(k+1) is true here.
Case k+1 > 2:

W N

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Bounding Fibonacci l: f,, < 2" foralln = 0

1. Let P(n) be “f, <2"". We prove that P(n) is true for all
integers n > 0 by strong induction.
Base Case: f,=0 < 1= 2° so P(0) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2/ for every integer j from O to k.
4. Inductive Step:| Goal: Show P(k+1); that is, f,,, < 2%
Case k+1 =1: Thenf,=1<2=2!so0 P(k+1) is true here.
Case k+1 > 2: Then f,,,=f, + f_, by definition
< 2k+ 2k1py the IH since k-1 >0
< 2K+ 2k = 2.2k = 2k+l
so P(k+1) is true in this case.
These are the only cases so P(k+1) follows.

W N

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Bounding Fibonacci l: f,, < 2" foralln = 0

1. Let P(n) be “f, <2"". We prove that P(n) is true for all
integers n > 0 by strong induction.
Base Case: f,=0 < 1= 2° so P(0) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2/ for every integer j from O to k.
4. Inductive Step:| Goal: Show P(k+1); that is, f,,, < 2%
Case k+1 =1: Thenf,=1<2=2!so0 P(k+1) is true here.
Case k+1 > 2: Then f,,,=f, + f_, by definition
< 2k+ 2k1py the IH since k-1 >0
< 2K+ 2k = 2.2k = 2k+l
so P(k+1) is true in this case.
These are the only cases so P(k+1) follows.

W N

5. Therefore by strong induction,
. fo=0 fi=1
fo<2'forallintegersn=0. | ¢ _ ¢ 1 f _ foralln>2




Bounding Fibonacci ll: f,, > 2"/? "1 foralln > 2

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Bounding Fibonacci ll: f, > 2"/2~1foralln > 2

1. Let P(n) be “f_ >2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Bounding Fibonacci ll: f, > 2"/2~1foralln > 2

1. Let P(n) be “f_ >2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Case:f,=f,+f,=1 and 2%2-1=20=1 so P(2) is true.

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Bounding Fibonacci ll: f, > 2"/2~1foralln > 2

1. Let P(n) be “f_ >2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Case:f,=f,+f,=1 and 2%2-1=20=1 so P(2) is true.

Inductive Hypothesis: Assume that for some arbitrary

integer k > 2, P(j) is true for every integer j from 2 to k.

W

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Bounding Fibonacci ll: f, > 2"/2~1foralln > 2

1.

W N

Let P(n) be “f_ > 2"2-1", We prove that P(n) is true for all
integers n > 2 by strong induction.

Base Case: f,=f,+f,=1 and 2%2-1=20=1 so P(2) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(k+1)/2-1

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Bounding Fibonacci ll: f, > 2"/2~1foralln > 2

1.

W N

Let P(n) be “f_ > 2"2-1", We prove that P(n) is true for all
integers n > 2 by strong induction.

Base Case: f,=f,+f,=1 and 2%2-1=20=1 so P(2) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(k+1)/2-1

No need for cases for the definition here:
fe =+ 1, since k+1>2
Now just want to apply the IH to get P(k) and P(k-1)
Problem: Though we can get P(k) since k > 2,
k-1 may only be 1 so we can’t conclude P(k-1)

Solution: Separate cases for when k-1=1 (or k+1=3).

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Bounding Fibonacci ll: f, > 2"/2~1foralln > 2

1.

W N

Let P(n) be “f_ > 2"2-1", We prove that P(n) is true for all
integers n > 2 by strong induction.

Base Case: f,=f,+f,=1 and 2%2-1=20=1 so P(2) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(k+1)/2-1
Case k = 2:
Case k > 3:

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Bounding Fibonacci ll: f, > 2"/2~1foralln > 2

1. Let P(n) be “f_ >2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

Base Case: f,=f,+f,=1 and 2%2-1=20=1 so P(2) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(k+1)/2-1
Case k=2: Then f,,,=f,=f,+f, =2 >21/2=23/21=(k1)/2-1
Case k > 3:

W N

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Bounding Fibonacci ll: f, > 2"/2~1foralln > 2

1.

W N

5.

Let P(n) be “f_ > 2"2-1", We prove that P(n) is true for all
integers n > 2 by strong induction.

Base Case: f,=f,+f,=1 and 2%2-1=20=1 so P(2) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(k+1)/2-1
Case k =2: Thenf,,,=f, =f,+f, =2 > 22 =23/21=(k+1)/2-1
Case k>3: f.,,=f + f_, by definition

> 2k/2-1 4 2(k1)/2-1 py the IH since k-1 > 2
> 2(k-1)/2-1 4 9(k-1)/2-1 = 9(k-1)/2 = D (k+1)/2 -1

So P(k+1) is true in both cases.
Therefore by strong induction, f_ > 2"2-1 for all integers n > 0.

fo=0 fi1=1
fn=Ffn-1t+fno foralln =2




Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then,a = f,,;1.



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then,a = f,,;1.

An informal way to get the idea: Consider an n step gcd
calculation starting with r_,,=a and r_=b:

rn+1= ann + rn-1

— r +r
' Un-1ln1 T e Forallk>2,r_,=r,, modr,
r, = (i

Now r, > 1 and each g, must be >1. If we replace all the
qi’s by 1 and replace r, by 1, we can only reduce the r,s.
After that reduction, r =f, for every k.



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then,a = f,,11-

We go by strong induction on n.
Let P(n) be “gcd(a,b) with a 2 b>0 takes n steps — a>f_ ,,” forall n > 1.

Base Case: n=1 Suppose Euclid’s Algorithm witha > b >0 takes 1 step.
By assumption,a=>b 2> 1=f, so P(1) holds.

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true
for all integersjs.t. 1 <j<k




Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then,a = f,,11-

We go by strong induction on n.
Let P(n) be “gcd(a,b) with a 2 b>0 takes n steps — a>f_ ,,” forall n > 1.

Base Case: n=1 Suppose Euclid’s Algorithm witha > b >0 takes 1 step.
By assumption,a=>b 2> 1=f, so P(1) holds.

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true
for all integersjs.t. 1 <j<k

Inductive Step: We want to show|if gcd(a,b) with a = b > 0 takes k+1
steps, thena >f, ,,




Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true

for all integersjs.t.1<j<k

Inductive Step:| Goal: if gcd(a,b) with a > b>0 takes k+1 steps, thena>f,,,

Now if k+1=2, then Euclid’s algorithm on a and b can be written as
a=q,b +r

b=q;r
andr, > 0.

Also, since a > b >0 we must have g, >1and b > 1.

Soa=q,b+r,2b+r, 21+1=2=1f,=1, , as required.



Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true

for all integersjs.t.1<j<k

Inductive Step:| Goal: if gcd(a,b) with a > b>0 takes k+1 steps, thena >f,,,

Next suppose that k+1 > 3 so for the first 3 steps of Euclid’s
algorithm on a and b we have

a= qk+1b + 1

b=q re+r.

MNe = Okaler + N2
and there are k-2 more steps after this.



Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true
for all integersjs.t. 1 <j<k

Inductive Step:| Goal: if gcd(a,b) with a > b>0 takes k+1 steps, thena >f,,,

Next suppose that k+1 > 3 so for the first 3 steps of Euclid’s
algorithm on a and b we have

a= qk+1b + 1

b =q r+re

Mo = AQpe1lir T N2
and there are k-2 more steps after this. Note that this means that
the gcd(b, r,) takes k steps and gcd(r,, r, ;) takes k-1 steps.

So since k, k-1 > 1 by the IH we have b > f, ., and r, > f,.



Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true
for all integersjs.t. 1 <j<k

Inductive Step:| Goal: if gcd(a,b) with a > b>0 takes k+1 steps, thena >f,,,

Next suppose that k+1 > 3 so for the first 3 steps of Euclid’s
algorithm on a and b we have

a= qk+1b + 1

b =q r+re

Mo = AQpe1lir T N2
and there are k-2 more steps after this. Note that this means that
the gcd(b, r,) takes k steps and gcd(r,, r, ;) takes k-1 steps.

So since k, k-1 > 1 by the IH we have b > f, ., and r, > f,.
Also, since a > b we must have q,,, > 1.

Soa=q,b+r,2b+r 2f +f="F,, asrequired. m



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then,a = f,,;1.

Why does this help us bound the running time of Euclid’s
Algorithm?

We already proved that f,, > 2™"/2 =1 so f,,, 1 = 2(n~1)/2
Therefore: if Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0

then a > 2(n—1)/2

so(n—1)/2<log,a orn <1+ 2log,a
i.e., # of steps < 1 + twice the # of bits in a.



Recursive Definition of Sets

Recursive Definition
« Basis Step: 0 €S
 Recursive Step: Ifx€ S, thenx+2€S

* Exclusion Rule: Every element in S follows from
basis steps and a finite number of recursive
steps.



Recursive Definitions of Sets

Natural numbers

Basis: 0eS
Recursive: If x €S, thenx+t1 €S

Even numbers
Basis: 0esS

Recursive: If X €S, then x+2 €S

Powers of 3:

Basis: 1 €S
Recursive: If X € S, then 3x € S.

Basis: [0,0]€S,[1,1]€S
Recursive: If [n-1,x] €S and[n,y] €S,
then [n+1,x +y] €S.



Recursive Definitions of Sets

Natural numbers

Basis: 0eS
Recursive: If x €S, thenx+t1 €S

Even numbers
Basis: 0esS

Recursive: If X €S, then x+2 €S

Powers of 3:

Basis: 1 €S
Recursive: If X € S, then 3x € S.

Basis: [0,0]€S,[1,1]€S
Recursive: If [n-1,x] €S and[n,y] €S,
then [n+1,x +y] €S.

Fibonacci numbers



Recursive Definitions of Sets: General Form

Recursive definition
— Basis step: Some specific elements are in §

— Recursive step: Given some existing named
elements in S some new objects constructed
from these named elements are also in S.

— Exclusion rule: Every element in S follows from
basis steps and a finite number of recursive
steps



Strings

* An alphabet X is any finite set of characters

* The set 2* of strings over the alphabet X is
defined by

— Basis: € € 2 (€is the empty string)
— Recursive: ifw e 2*, a € 2, thenwa € 2*



Palindromes

Palindromes are strings that are the same
backwards and forwards

Basis:
€ is a palindrome and any a € 2 is a palindrome

Recursive step:
If p is a palindrome then apa is a palindrome for
every a € 2



All Binary Strings with no 1’s before O’s




All Binary Strings with no 1’s before O’s

Basis:
EES

Recursive:
If x €S, then Ox € S
If x €S, then x1 €S



Function Definitions on Recursively Defined Sets

Length:
len(€) =0
len(wa)=1+len(w)forw€zi’,a€l

Reversal:
ER=E
(wa)R=awRforw €z, a€l

Concatenation:
XxeE=xforxey
xewa=(xew)aforx€, a€zZ



