CSE 311: Foundations of Computing

Lecture 14: Induction




Mathematical Induction

Method for proving statements about all natural numbers
— A new logical inference rule!
* |t only applies over the natural numbers

* The idea is to use the special structure of the naturals
to prove things more easily

— Particularly useful for reasoning about programs!
for(int i=0; 1 < n; n++) { .. }
« Show P(i) holds after i times through the loop
public int f(int x) {
if (x == @) { return 0; }
else { return f(x - 1) + 1; }
}

* f(x) = x for all values of x > 0 naturally shown by induction.



Prove va,b,m >0V k € N (a = b (mod m) - a* = b* (mod m))

Let a,b,m > 0 € Z be arbitrary. Let k € N be arbitrary.
Suppose that a = b (mod m).

We Know (a = b (mod m) Aa = b (mod m)) - a? = b? (mod m)
by multiplying congruences. So, applying this
repeatedly, we have:

(a = b (modm) Aa = b (mod m)) - a? = b? (mod m)
a’ = b* (modm)Aa=b(modm)) = a® = b3 (mod m)
( )

(a"_l = p* 1 (mod m) Aa = b (mod m)) — a® = b* (mod m)

The “..."s is a problem! We don’t have a proof rule that
allows us to say “do this over and over”.



But there such a property of the natural numbers!

Domain: Natural Numbers

P(0)
vk (P(k) — P(k + 1))

~Vn P(n)




Induction Is A Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

s Vn P(n)

How do the givens prove P(5)?



Induction Is A Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

s Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)—P(2) P(2)—P(3) P(3)—P(4) P(4)—P(5)

7~ N 7 N 7N N N
P(0) P(1) P(2) P(3) P(4) P(5)

First, we have P(0).
Since P(n) — P(n+1) for all n, we have P(0) — P(1).

Since P(0) is true and P(0) — P(1), by Modus Ponens, P(1) is true.
Since P(n) — P(n+1) for all n, we have P(1) — P(2).

Since P(1) is true and P(1) — P(2), by Modus Ponens, P(2) is true.



Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)




Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

1. Prove P(0)

4. Vk(P(k) —> P(k+1))
5. VnP(n) Induction: 1, 4



Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

1. Prove P(0)
2. Let k be an arbitrary integer >0

3. P(k) > P(k+1)
4. Vk(P(k) — P(k+1)) Intro V: 2, 3
5. VnP(n) Induction: 1, 4



Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

1. Prove P(0)
2. Let k be an arbitrary integer >0
3.1. Assume that P(k) is true

3.2. ...

3.3. Prove P(k+1) is true
3. P(k) > P(k+1) Direct Proof Rule
4. Vk(P(k) — P(k+1)) Intro V: 2, 3

5. VnP(n) Induction: 1, 4



Translating to an English Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

Base Case

1. Prove P(0)
2. Let k be an arbitrary integer 20
3.1. Assume that P(k) is true

Inductive
Hypothesis

3.2. ... Inductive
3.3. Prove P(k+1) is true Step
3. P(k) > P(k+1) Direct Proof Rule
4. Yk (P(k) —> P(k+1)) Intro V: 2, 3

5. ¥n P(n) Induction: 1, 4



Translating To An English Proof

1. Prove P(0) | Base Case

2. Let k be an arbitrary integer 20 Inductive
3.1. Assume that P(k) is true | Hypothesis

3.2. .. Inductive
3.3. Prove P(k+1) is true Step
3. P(k) > P(k+1) Direct Proof Rule
4. Vk (P(k) > P(k+1)) Intro V: 2, 3
5. ¥nP(n) Induction: 1, 4

Induction Proof Template
[...Define P(n)...]
We will show that P(n) is true for every n € N by Induction.

Base Case: [...proof of P(0) here...]
Induction Hypothesis:

Suppose that P(k) is true for some k € N.
Induction Step:

We want to prove that P(k + 1) is true.

[...proof of P(k + 1) here...]

The proof of P(k + 1) must invoke the IH somewhere.
So, the claim is true by induction.




Inductive Proofs In 5 Easy Steps

Proof:

1. “Let P(n) be... . We will show that P(n) is true for every
n = 0 by Induction.”

2. “Base Case:” Prove P(0)
3. “Inductive Hypothesis:

Assume P (k) is true for some arbitrary integer k = 0”
4. “Inductive Step:” Prove that P(k + 1) is true:

Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are
using it. (Don’tassume P(k + 1) 1)

5. “Conclusion: Result follows by induction”



Whatisl1l + 2 + 4 + ... + 2™°?

¢ 1 = 1
e 1 + 2 = 3
1 +2+ 4 = 7
c1+2+4+8 = 15
1 +2+4+ 8+ 16 = 31

It sure looks like this sum is 2**1 — 1
How can we prove it?

We could prove itforn =1,n=2,n =3, ... but
that would literally take forever.

Good that we have induction!



Provel + 2 + 4 + ... 4 2n =2ntl_1




Provel + 2 + 4 + ... 4 2n =2ntl_1

1. LetP(n)be “1+2+...+2"=2"1—-1" We will show P(n) is true
for all natural numbers by induction.



Provel + 2 + 4 + ... 4 2n =2ntl_1

1. LetP(n)be “1+2+...+2"=2"1—-1" We will show P(n) is true
for all natural numbers by induction.

2. Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.



Provel + 2 + 4 + ... 4 2n =2ntl_1

1. LetP(n)be “1+2+...+2"=2"1—-1" We will show P(n) is true
for all natural numbers by induction.

2. Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.

l.e, suppose 1 + 2 + ... + 2k =2k*1 _ 1




Provel + 2 + 4 + ... 4 2n =2ntl_1

1.

N

Let P(n) be “1+2+..+2"=2"1-1" We will show P(n) is true
for all natural numbers by induction.
Base Case (n=0): 2°=1=2-1=2%1-1s0 P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.

Induction Step:

Goal: Show P(k+1), i.e.show 1 + 2 + ... + 2k + 2kt1 = Jk+2 1




Provel + 2 + 4 + ... 4 2n =2ntl_1

1.

N

Let P(n) be “1+2+..+2"=2"1-1" We will show P(n) is true
for all natural numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.

Induction Step:
1+2+..+2k=2x1-1 pylIH
Adding 21 to both sides, we get:
1+2+..+2k4 2kl = okl 4 Dkl _q
Note that 2k+1 + 2k+1 = 2(2k+1) = Qk+2,
So, we have 1+ 2 +...+2Kk+2k1 =22 _ 1 which is
exactly P(k+1).



Provel + 2 + 4 + ... 4 2n =2ntl_1

1.

N

Let P(n) be “1+2+..+2"=2"1-1" We will show P(n) is true
for all natural numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.

Induction Step:
We can calculate
1+2 4. 042K+ 2k = (142+ ... + 2K + 2k
= 2k+1 1 + 2kl by the IH
— 2(2k+1) -1
— 2k+2 _1’
which is exactly P(k+1).

Alternative way of writing the inductive step



Provel + 2 + 4 + ... 4 2n =2ntl_1

1.

N

Let P(n) be “1+2+..+2"=2"1-1" We will show P(n) is true
for all natural numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.

Induction Step:
We can calculate
1+24 .04 2K+ 2k = (142+ ... + 2K) + 2k
= 2k+1 1 + 2kl by the IH
— 2(2k+1) -1
— 2k+2 _1’
which is exactly P(k+1).

5. Thus P(n) is true for all n €N, by induction.



Provel + 2 +3 + ...+ n=nn+1)/2




Prove 1 + 2 +3 + ..+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+1)/2". We will show P(n) is
true for all natural numbers by induction.



Prove 1 + 2 +3 + ..+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+1)/2". We will show P(n) is
true for all natural numbers by induction.

2. Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.



Prove 1 + 2 +3 + ..+ n=nn+1)/2

1.

N

Let P(n) be “0+1+2+..+n=n(n+1)/2". We will show P(n) is
true for all natural numbers by induction.

Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.

Induction Step:

Goal: Show P(k+1), i.e. show 1 + 2 + ...+ k+ (k+1) = (k+1)(k+2)/2




Prove 1 + 2 +3 + ..+ n=nn+1)/2

1.

N

Let P(n) be “0+1+2+..+n=n(n+1)/2". We will show P(n) is
true for all natural numbers by induction.

Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.

Induction Step:
1+2+..+k+(k+1)=(1+2+..+k)+ (k+1)
= k(k+1)/2 + (k+1) by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2
So, we have shown 1+ 2 + ... + k + (k+1) = (k+1)(k+2)/2,
which is exactly P(k+1).

5. Thus P(n) is true for all n €N, by induction.



Another example of a pattern

20 -1 =1-1=0=3-0

¢« 22—-1=4 —-1=3=3-1

e 24— 1 =16 —1 =15 = 3-5
¢« 26— 1 =64 —-1=63 =321
e 28 — 1 = 256 — 1 = 255 = 3-85



Prove: 3| (2“"—1)foralln = 0




Prove: 3| (2“"—1)foralln > 0

1. Let P(n) be “3 | (22"—1)". We will show P(n) is true for all
hatural numbers by induction.

2. Base Case (n=0):



Prove: 3| (24"—1) foralln = 0

1.

Let P(n) be “3 | (22"—1)". We will show P(n) is true for all
hatural numbers by induction.

Base Case (n=0): 220-1=1-1=0=3-0 Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.

Induction Step:
Goal: Show P(k+1), i.e. show 3 | (22(k+1)—1)




Prove: 3| (2“"—1)foralln > 0

1.

Let P(n) be “3 | (22"—1)". We will show P(n) is true for all
hatural numbers by induction.

Base Case (n=0): 220-1=1-1=0=3-0 Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.

Induction Step:
By IH, 3 | (22— 1) so 22— 1 = 3j for some integer |
So 22(0k+1)— 1 = 222 _ 1 = 4(22K) — 1 = 4(3j+1) — 1

= 12j+3 = 3(4j+1)
Therefore 3 | (22(k*1)— 1) which is exactly P(k+1).

5. Thus P(n) is true for all n <N, by induction.



Checkerboard Tiling

* Prove that a 2" x 2" checkerboard with one square
removed can be tiled with:




Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon oh n.

2. Base Case: n=1




Checkerboard Tiling

1.

Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon oh n.

Base Case: n=1

Inductive Hypothesis: Assume P(k) for some
arbitrary integer k=1

Inductive Step: Prove P(k+1)

Apply IH to
each quadrant
| then fill with
extra tile.




