
CSE 311: Foundations of Computing

Lecture 14: Induction



Mathematical Induction

Method for proving statements about all natural numbers
– A new logical inference rule!

• It	only	applies	over	the	natural	numbers
• The	idea	is	to	use the	special	structure	of	the	naturals	
to	prove	things	more	easily

– Particularly useful for reasoning about programs!
for(int i=0; i < n; n++) { … }

• Show	P(i)	holds	after	i	times	through	the	loop
public int f(int x) { 

if (x == 0) { return 0; }
else { return f(x – 1) + 1; }

}
• f(x)	=	x	for	all	values	of	x	≥	0	naturally	shown	by	induction.



Prove ∀𝑎, 𝑏,𝑚 > 0	∀	𝑘 ∈ ℕ	(𝑎 ≡ 𝑏	 mod	𝑚 → 𝑎2 ≡ 𝑏2	 mod	𝑚 )

Let 𝑎, 𝑏,𝑚 > 0 ∈ ℤ be arbitrary. Let 𝑘 ∈ ℕ be arbitrary.
Suppose that 𝑎 ≡ 𝑏	 mod	𝑚 .

We know 𝑎 ≡ 𝑏	 mod	𝑚 ∧ 𝑎 ≡ 𝑏	 mod	𝑚 → 𝑎6 ≡ 𝑏6	 mod	𝑚
by multiplying congruences.  So, applying this 
repeatedly, we have:

𝑎 ≡ 𝑏	 mod	𝑚 ∧ 𝑎 ≡ 𝑏	 mod	𝑚 → 𝑎6 ≡ 𝑏6	 mod	𝑚
𝑎6 ≡ 𝑏6	 mod	𝑚 ∧ 𝑎 ≡ 𝑏	 mod	𝑚 → 𝑎7 ≡ 𝑏7	 mod	𝑚

…
𝑎289 ≡ 𝑏289	 mod	𝑚 ∧ 𝑎 ≡ 𝑏	 mod	𝑚 → 𝑎2 ≡ 𝑏2	 mod	𝑚

The	“…”s	is	a	problem!		We	don’t	have	a	proof	rule	that	
allows	us	to	say	“do	this	over	and	over”.



But there such a property of the natural numbers!

Domain:	Natural	Numbers

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛		𝑃(𝑛)



Induction Is A Rule of Inference
Domain:	Natural	Numbers

How do the givens prove P(5)?

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛		𝑃(𝑛)



Induction Is A Rule of Inference
Domain:	Natural	Numbers

How do the givens prove P(5)?

First, we have P(0).
Since P(n) → P(n+1) for all n, we have P(0)→ P(1).  

Since P(0) is true and P(0)→ P(1), by Modus Ponens, P(1) is true.
Since P(n) → P(n+1) for all n, we have P(1)→ P(2).

Since P(1) is true and P(1) → P(2), by Modus Ponens, P(2) is true.

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)																		P(1)→P(2)				 P(2)→P(3)					 P(3)→P(4	)														P(4)→P(5)					

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛		𝑃(𝑛)



Using The Induction Rule In A Formal Proof

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛		𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1.	Prove	P(0)
2. Let	k	be	an	arbitrary	integer	≥	0

3.1.		Assume	that	P(k)	is	true
3.2.		...
3.3.		Prove	P(k+1)	is	true

3. P(k)	® P(k+1)																									 Direct	Proof	Rule
4. "k	(P(k)	® P(k+1))																 Intro	": 2, 3
5. "n	P(n)																																			 Induction:	1,	4

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛		𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1.	Prove	P(0)
2. Let	k	be	an	arbitrary	integer	≥	0

3.1.		Assume	that	P(k)	is	true
3.2.		...
3.3.		Prove	P(k+1)	is	true

3. P(k)	® P(k+1)																									 Direct	Proof	Rule
4. "k	(P(k)	® P(k+1))																 Intro	": 2, 3
5. "n	P(n)																																			 Induction:	1,	4

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛		𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1.	Prove	P(0)
2. Let	k	be	an	arbitrary	integer	≥	0

3.1.		Assume	that	P(k)	is	true
3.2.		...
3.3.		Prove	P(k+1)	is	true

3. P(k)	® P(k+1)																									 Direct	Proof	Rule
4. "k	(P(k)	® P(k+1))																 Intro	": 2, 3
5. "n	P(n)																																			 Induction:	1,	4

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛		𝑃(𝑛)



Translating to an English Proof

1.	Prove	P(0)
2. Let	k	be	an	arbitrary	integer	≥	0

3.1.	Assume	that	P(k)	is	true
3.2.		...
3.3.		Prove	P(k+1)	is	true

3. P(k)	® P(k+1)																									 Direct	Proof	Rule
4. "k	(P(k)	® P(k+1))																 Intro	": 2, 3
5. "n	P(n)																																			 Induction:	1,	4

Base Case
Inductive 
Hypothesis

Inductive 
Step

Conclusion

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛		𝑃(𝑛)



Translating To An English Proof

[…Define	P(n)…]
We will show that 𝑃(𝑛) is true for every 𝑛 ∈ ℕ by Induction.
Base Case: […proof	of	𝑃(0) here…]
Induction Hypothesis: 

Suppose that 𝑃(𝑘) is true for some 𝑘 ∈ ℕ.
Induction Step:

We want to prove that 𝑃(𝑘 + 1) is true.
[…proof	of	𝑃(𝑘 + 1) here…]
The	proof	of	𝑃(𝑘 + 1)must invoke	the	IH	somewhere.

So, the claim is true by induction.

Induction Proof Template



Inductive Proofs In 5 Easy Steps

Proof: 
1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for every 

𝑛	 ≥ 	0 by Induction.”
2. “Base Case:” Prove 𝑃(0)
3. “Inductive Hypothesis:

Assume 𝑃(𝑘) is true for some arbitrary integer 𝑘	 ≥ 	0”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:

Use the goal to figure out what you need. 
Make sure you are using I.H. and point out where you are 
using it.  (Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: Result follows by induction”



What is 1	 + 	2	 + 	4	 +	…	+ 	2𝑛 ?

• 1	 + 	2	 + 	4	 + 	8	 + 	16														 = 				1
• 1	 + 	2	 + 	4	 + 	8	 + 	16														 = 				3
• 1	 + 	2	 + 	4	 + 	8	 + 	16														 = 				7
• 1	 + 	2	 + 	4	 + 	8	 + 	16														 = 		15
• 1	 + 	2	 + 	4	 + 	8	 + 	16														 = 		31

It sure looks like this sum is 2JK9 − 1
How can we prove it?

We could prove it for 𝑛 = 1, 𝑛 = 2, 𝑛 = 3,… but 
that would literally take forever.
Good that we have induction!



Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2JK9– 	1



1. Let P(n)	be “1	+	2	+	…	+	2n =	2n+1 – 1”.		We will show P(n)	is true 
for all natural numbers by induction.

2. Base Case (n=0):				20 =	1	=	2	– 1	=	20+1 – 1
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k	≥	0.
4. Induction Step:  

Goal:  Show P(k+1),	i.e. show 1	+	2	+	…	+	2k +	2k+1 =	2k+2 – 1
1	+	2	+	…	+	2k =	2k+1 – 1 by IH

Adding 2k+1 to both sides, we get:
1	+	2	+	…	+	2k +	2k+1 =	2k+1 +	2k+1 – 1

Note that 2k+1 +	2k+1 =	2(2k+1)	=	2k+2.
So, we have  1	+	2	+	…	+	2k +	2k+1 =	2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k)	is true for all k∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2JK9– 	1



1. Let P(n)	be “1	+	2	+	…	+	2n =	2n+1 – 1”.		We will show P(n)	is true 
for all natural numbers by induction.

2. Base Case (n=0):				20 =	1	=	2	– 1	=	20+1 – 1	so P(0)	is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k	≥	0.
4. Induction Step:  

Goal:  Show P(k+1),	i.e. show 1	+	2	+	…	+	2k +	2k+1 =	2k+2 – 1
1	+	2	+	…	+	2k =	2k+1 – 1 by IH

Adding 2k+1 to both sides, we get:
1	+	2	+	…	+	2k +	2k+1 =	2k+1 +	2k+1 – 1

Note that 2k+1 +	2k+1 =	2(2k+1)	=	2k+2.
So, we have  1	+	2	+	…	+	2k +	2k+1 =	2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k)	is true for all k∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2JK9– 	1



1. Let P(n)	be “1	+	2	+	…	+	2n =	2n+1 – 1”.		We will show P(n)	is true 
for all natural numbers by induction.

2. Base Case (n=0):				20 =	1	=	2	– 1	=	20+1 – 1	so P(0)	is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k	≥	0.
4. I.e, suppose 1 + 2 + … + 2k = 2k+1 – 1.

Goal:  Show P(k+1I.e.,),	i.e. show 1	+	2	+	…	+	2k +	2k+1 =	2k+2 – 1
1	+	2	+	…	+	2k =	2k+1 – 1 by IH

Adding 2k+1 to both sides, we get:
1	+	2	+	…	+	2k +	2k+1 =	2k+1 +	2k+1 – 1

Note that 2k+1 +	2k+1 =	2(2k+1)	=	2k+2.
So, we have  1	+	2	+	…	+	2k +	2k+1 =	2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k)	is true for all k∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2JK9– 	1



1. Let P(n)	be “1	+	2	+	…	+	2n =	2n+1 – 1”.		We will show P(n)	is true 
for all natural numbers by induction.

2. Base Case (n=0):				20 =	1	=	2	– 1	=	20+1 – 1	so P(0)	is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k	≥	0.
4. Induction Step:  

Goal:  Show P(k+1),	i.e. show 1	+	2	+	…	+	2k +	2k+1 =	2k+2 – 1
1	+	2	+	…	+	2k =	2k+1 – 1 by IH

Adding 2k+1 to both sides, we get:
1	+	2	+	…	+	2k +	2k+1 =	2k+1 +	2k+1 – 1

Note that 2k+1 +	2k+1 =	2(2k+1)	=	2k+2.
So, we have  1	+	2	+	…	+	2k +	2k+1 =	2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k)	is true for all k∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2JK9– 	1



1. Let P(n)	be “1	+	2	+	…	+	2n =	2n+1 – 1”.		We will show P(n)	is true 
for all natural numbers by induction.

2. Base Case (n=0):				20 =	1	=	2	– 1	=	20+1 – 1	so P(0)	is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k	≥	0.
4. Induction Step:  

1	+	2	+	…	+	2k =	2k+1 – 1 by IH
Adding 2k+1 to both sides, we get:

1	+	2	+	…	+	2k +	2k+1 =	2k+1 +	2k+1 – 1
Note that 2k+1 +	2k+1 =	2(2k+1)	=	2k+2.
So, we have  1	+	2	+	…	+	2k +	2k+1 =	2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k)	is true for all k∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2JK9– 	1



1. Let P(n)	be “1	+	2	+	…	+	2n =	2n+1 – 1”.		We will show P(n)	is true 
for all natural numbers by induction.

2. Base Case (n=0):				20 =	1	=	2	– 1	=	20+1 – 1	so P(0)	is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k	≥	0.
4. Induction Step:  

We can calculate
1	+	2	+	…	+	2k +	2k+1 =	(1+2+	…	+	2k)	+	2k+1

=	2k+1 -1	+	2k+1 by the IH
=	2(2k+1)	-1
=	2k+2 -1,

which is exactly P(k+1).

5. Thus P(k)	is true for all k∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2JK9– 	1

Alternative way of writing the inductive step



1. Let P(n)	be “1	+	2	+	…	+	2n =	2n+1 – 1”.		We will show P(n)	is true 
for all natural numbers by induction.

2. Base Case (n=0):				20 =	1	=	2	– 1	=	20+1 – 1	so P(0)	is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k	≥	0.
4. Induction Step:  

We can calculate
1	+	2	+	…	+	2k +	2k+1 =	(1+2+	…	+	2k)	+	2k+1

=	2k+1 -1	+	2k+1 by the IH
=	2(2k+1)	-1
=	2k+2 -1,

which is exactly P(k+1).
5. Thus P(n)	is true for all n∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2JK9– 	1



Prove 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2



1. Let P(n)	be “0	+	1	+	2	+	…	+	n	=	n(n+1)/2”.		We will show P(n)	is 
true for all natural numbers by induction.

2. Base Case (n=0):				0	=	0(0+1)/2.			Therefore P(0)	is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k	≥	0.
4. Induction Step:  

Goal:  Show P(k+1),	i.e. show 1	+	2	+	…	+	(n+1)	=	(n+1)(n+2)/2
1	+	2	+	…	+	n	=	n(n+1)/2 by IH

Adding n+1 to both sides, we get:
1	+	2	+	…	+	n	+	(n+1)	=	n(n+1)/2	+	(n+1)

Now n(n+1)/2	+	(n+1)	=	(n+1)(n/2	+	1)	=	(n+1)(n+2)/2.
So, we have  1	+	2	+	…	+	n	+	(n+1)	=	(n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k)	is true for all k∈ℕ, by induction.

Prove		1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2



1. Let P(n)	be “0	+	1	+	2	+	…	+	n	=	n(n+1)/2”.		We will show P(n)	is 
true for all natural numbers by induction.

2. Base Case (n=0):				0	=	0(0+1)/2.			Therefore P(0)	is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k	≥	0.
4. Induction Step:  

Goal:  Show P(k+1),	i.e. show 1	+	2	+	…	+	(n+1)	=	(n+1)(n+2)/2
1	+	2	+	…	+	n	=	n(n+1)/2 by IH

Adding n+1 to both sides, we get:
1	+	2	+	…	+	n	+	(n+1)	=	n(n+1)/2	+	(n+1)

Now n(n+1)/2	+	(n+1)	=	(n+1)(n/2	+	1)	=	(n+1)(n+2)/2.
So, we have  1	+	2	+	…	+	n	+	(n+1)	=	(n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k)	is true for all k∈ℕ, by induction.

Prove		1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2



1. Let P(n)	be “0	+	1	+	2	+	…	+	n	=	n(n+1)/2”.		We will show P(n)	is 
true for all natural numbers by induction.

2. Base Case (n=0):				0	=	0(0+1)/2.			Therefore P(0)	is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k	≥	0.
4. Induction Step:  

Goal:  Show P(k+1),	i.e. show 1	+	2	+	…+	k+	(k+1)	=	(k+1)(k+2)/2
1	+	2	+	…	+	n	=	n(n+1)/2 by IH

Adding n+1 to both sides, we get:
1	+	2	+	…	+	n	+	(n+1)	=	n(n+1)/2	+	(n+1)

Now n(n+1)/2	+	(n+1)	=	(n+1)(n/2	+	1)	=	(n+1)(n+2)/2.
So, we have  1	+	2	+	…	+	n	+	(n+1)	=	(n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k)	is true for all k∈ℕ, by induction.

Prove		1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2



1. Let P(n)	be “0	+	1	+	2	+	…	+	n	=	n(n+1)/2”.		We will show P(n)	is 
true for all natural numbers by induction.

2. Base Case (n=0):				0	=	0(0+1)/2.			Therefore P(0)	is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k	≥	0.
4. Induction Step:  

1	+	2	+	…	+	k	+	(k+1)	=	(1	+	2	+	…	+	k)	+	(k+1)	
=	k(k+1)/2	+	(k+1)		by IH
=	(k+1)(k/2	+	1)
=	(k+1)(k+2)/2

So, we have shown 1	+	2	+	…	+	k	+	(k+1)	=	(k+1)(k+2)/2, 
which is exactly P(k+1).

5. Thus P(n)	is true for all n∈ℕ, by induction.

Prove		1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2



Another example of a pattern

• 20	 − 	1	 = 	1	 − 	1	 = 	0	 = 	3 ⋅ 0
• 22	 − 	1	 = 	4			 − 	1	 = 	3	 = 	3 ⋅ 1
• 24	 − 	1	 = 	16	 − 	1	 = 	15	 = 	3 ⋅ 5		
• 26	 − 	1	 = 	64	 − 	1	 = 	63	 = 	3 ⋅ 21
• 28	 − 	1	 = 	256	 − 	1	 = 	255	 = 	3 ⋅ 85
• ⋯



Prove:  3 ∣ (26J−1) for all 𝑛 ≥ 0



1. Let P(n)	be “3	|	(22n	– 1)”.		We will show P(n)	is true for all 
natural numbers by induction.

2. Base Case (n=0):		 22·0-1=1-1=0=3·0 Therefore P(0)	is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k	≥	0.
4. Induction Step:  

Goal:  Show P(k+1),	i.e. show 3	|	22(k+1)	- 1
By IH 22k	– 1	=	3j	for some integer j

So 22(k+1)	– 1	=	22k+2	– 1	=	4(22k)	– 1	=	4(3j+1)	– 1
=	12j+3	=	3(4j+1)

Therefore 3	|	22(k+1)	- 1	which is exactly P(k+1).
5. Thus P(k)	is true for all k∈ℕ, by induction.

Prove:  3 ∣ (26J−1) for all 𝑛 ≥ 0



1. Let P(n)	be “3	|	(22n	– 1)”.		We will show P(n)	is true for all 
natural numbers by induction.

2. Base Case (n=0):				22·0-1=1-1=0=3·0 Therefore P(0)	is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k	≥	0.
4. Induction Step:  

Goal:  Show P(k+1),	i.e. show 3	|	(22(k+1)	– 1)
By IH 22k	– 1	=	3j	for some integer j

So 22(k+1)	– 1	=	22k+2	– 1	=	4(22k)	– 1	=	4(3j+1)	– 1
=	12j+3	=	3(4j+1)

Therefore 3	|	22(k+1)	- 1	which is exactly P(k+1).
5. Thus P(k)	is true for all k∈ℕ, by induction.

Prove:  3 ∣ (26J−1) for all 𝑛 ≥ 0



1. Let P(n)	be “3	|	(22n	– 1)”.		We will show P(n)	is true for all 
natural numbers by induction.

2. Base Case (n=0):				22·0-1=1-1=0=3·0 Therefore P(0)	is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k	≥	0.
4. Induction Step:  

By IH, 3	|	(22k	– 1)	so 22k	– 1	=	3j	for some integer j
So 22(k+1)	– 1	=	22k+2	– 1	=	4(22k)	– 1	=	4(3j+1)	– 1

=	12j+3	=	3(4j+1)
Therefore 3	|	(22(k+1)	– 1)	which is exactly P(k+1).

5. Thus P(n)	is true for all n∈ℕ, by induction.

Prove:  3 ∣ (26J−1) for all 𝑛 ≥ 0



Checkerboard Tiling

• Prove that a 2𝑛	´	2𝑛	checkerboard with one square 
removed can be tiled with:



Checkerboard Tiling

1. Let P(n) be any 2n´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1 by induction on n.

2. Base Case: n=1



Checkerboard Tiling

1. Let P(n) be any 2n´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1 by induction on n.

2. Base Case: n=1
3. Inductive Hypothesis:  Assume P(k) for some  

arbitrary integer k≥1
4. Inductive Step: Prove P(k+1)

Apply IH to 
each quadrant 
then fill with 
extra tile.


