CSE 311: Foundations of Computing

Lecture 14: Induction

Method for proving statements about all natural numbers

- A new logical inference rule!
 - It only applies over the natural numbers
 - The idea is to **use** the special structure of the naturals to prove things more easily

- Particularly useful for reasoning about programs!

for(int i=0; i < n; n++) { ... }</pre>

• Show P(i) holds after i times through the loop
public int f(int x) {
 if (x == 0) { return 0; }
 else { return f(x - 1) + 1; }
}

• f(x) = x for all values of $x \ge 0$ naturally shown by induction.

Let $a, b, m > 0 \in \mathbb{Z}$ be arbitrary. Let $k \in \mathbb{N}$ be arbitrary. Suppose that $a \equiv b \pmod{m}$.

We know $(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^2 \equiv b^2 \pmod{m}$ by multiplying congruences. So, applying this repeatedly, we have:

$$(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \to a^2 \equiv b^2 \pmod{m} (a^2 \equiv b^2 \pmod{m} \land a \equiv b \pmod{m}) \to a^3 \equiv b^3 \pmod{m}$$

 $(a^{k-1} \equiv b^{k-1} \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^k \equiv b^k \pmod{m}$ The "…"s is a problem! We don't have a proof rule that allows us to say "do this over and over".

But there such a property of the natural numbers!

Domain: Natural Numbers

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

Induction Is A Rule of Inference

Domain: Natural Numbers

How do the givens prove P(5)?

Induction Is A Rule of Inference

 $\begin{array}{l} \mbox{First, we have P(0).} \\ \mbox{Since P(n)} \rightarrow P(n+1) \mbox{ for all n, we have P(0)} \rightarrow P(1). \\ \mbox{Since P(0) is true and P(0)} \rightarrow P(1), \mbox{ by Modus Ponens, P(1) is true.} \\ \mbox{Since P(n)} \rightarrow P(n+1) \mbox{ for all n, we have P(1)} \rightarrow P(2). \\ \mbox{Since P(1) is true and P(1)} \rightarrow P(2), \mbox{ by Modus Ponens, P(2) is true.} \end{array}$

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

 $\therefore \forall n \ P(n)$

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

 $\therefore \forall n \ P(n)$

1. Prove P(0)

- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. ∀n P(n)

Induction: 1, 4

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

- 1. Prove P(0)
- 2. Let k be an arbitrary integer ≥ 0

- 3. $P(k) \rightarrow P(k+1)$
- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. ∀n P(n)

Intro \forall : 2, 3 Induction: 1, 4

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

- 1. Prove P(0)
- 2. Let k be an arbitrary integer ≥ 0
 - 3.1. Assume that P(k) is true
 - 3.2. ...
 - 3.3. Prove P(k+1) is true
- 3. $P(k) \rightarrow P(k+1)$
- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. ∀n P(n)

Direct Proof Rule Intro \forall : 2, 3 Induction: 1, 4

Translating to an English Proof

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

Conclusion

Translating To An English Proof

Conclusion

Induction Proof Template

[...Define P(n)...] We will show that P(n) is true for every $n \in \mathbb{N}$ by Induction. Base Case: [...proof of P(0) here...] Induction Hypothesis: Suppose that P(k) is true for some $k \in \mathbb{N}$. Induction Step: We want to prove that P(k + 1) is true. [...proof of P(k + 1) here...] The proof of P(k + 1) must invoke the IH somewhere. So, the claim is true by induction.

Proof:

- **1.** "Let P(n) be.... We will show that P(n) is true for every $n \ge 0$ by Induction."
- **2.** "Base Case:" Prove P(0)
- **3. "Inductive Hypothesis:**

Assume P(k) is true for some arbitrary integer $k \ge 0$ "

- 4. "Inductive Step:" Prove that P(k + 1) is true: Use the goal to figure out what you need. Make sure you are using I.H. and point out where you are using it. (Don't assume P(k + 1)!!)
- 5. "Conclusion: Result follows by induction"

- 1 = 1 • 1 + 2 = 3 • 1 + 2 + 4 = 7
- 1 + 2 + 4 + 8 = 15
- 1 + 2 + 4 + 8 + 16 = 31

It sure looks like this sum is $2^{n+1} - 1$ How can we prove it?

We could prove it for n = 1, n = 2, n = 3, ... but that would literally take forever.

Good that we have induction!

1. Let P(n) be "1 + 2 + ... + 2ⁿ = 2ⁿ⁺¹ - 1". We will show P(n) is true for all natural numbers by induction.

- **1.** Let P(n) be "1 + 2 + ... + 2ⁿ = 2ⁿ⁺¹ 1". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.

- **1.** Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.

I.e, suppose $1 + 2 + ... + 2^{k} = 2^{k+1} - 1$.

- **1.** Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show $1 + 2 + ... + 2^{k} + 2^{k+1} = 2^{k+2} - 1$

- **1.** Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

 $1 + 2 + \dots + 2^k = 2^{k+1} - 1$ by IH

Adding 2^{k+1} to both sides, we get:

 $1 + 2 + ... + 2^{k} + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1$ Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$. So, we have $1 + 2 + ... + 2^{k} + 2^{k+1} = 2^{k+2} - 1$, which is exactly P(k+1).

- **1.** Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

We can calculate

$$1 + 2 + ... + 2^{k} + 2^{k+1} = (1+2+...+2^{k}) + 2^{k+1}$$

= 2^{k+1} -1 + 2^{k+1} by the IH
= 2(2^{k+1}) -1
= 2^{k+2} -1,

which is exactly P(k+1).

Alternative way of writing the inductive step

- **1.** Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

We can calculate

$$1 + 2 + \dots + 2^{k} + 2^{k+1} = (1+2+\dots + 2^{k}) + 2^{k+1}$$

= 2^{k+1} -1 + 2^{k+1} by the IH
= 2(2^{k+1}) -1
= 2^{k+2} -1,

which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.

- **1.** Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.

- **1.** Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show 1 + 2 + ... + k+ (k+1) = (k+1)(k+2)/2

- **1.** Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

$$1 + 2 + ... + k + (k+1) = (1 + 2 + ... + k) + (k+1)$$

= k(k+1)/2 + (k+1) by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2

So, we have shown 1 + 2 + ... + k + (k+1) = (k+1)(k+2)/2, which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

- $2^0 1 = 1 1 = 0 = 3 \cdot 0$
- $2^2 1 = 4 1 = 3 = 3 \cdot 1$
- $2^4 1 = 16 1 = 15 = 3 \cdot 5$
- $2^6 1 = 64 1 = 63 = 3 \cdot 21$
- $2^8 1 = 256 1 = 255 = 3 \cdot 85$
- • •

Prove: $3 \mid (2^{2n}-1)$ for all $n \ge 0$

Prove: $3 \mid (2^{2n} - 1)$ for all $n \ge 0$

- **1.** Let P(n) be "3 | $(2^{2n} 1)$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0):

Prove: $3 \mid (2^{2n} - 1)$ for all $n \ge 0$

- **1.** Let P(n) be "3 | $(2^{2n} 1)$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^{2\cdot 0}-1=1-1=0=3\cdot 0$ Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show $3 | (2^{2(k+1)} - 1)$

Prove: $3 \mid (2^{2n} - 1)$ for all $n \ge 0$

- **1.** Let P(n) be "3 | $(2^{2n} 1)$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^{2\cdot 0}-1=1-1=0=3\cdot 0$ Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

By IH, 3 |
$$(2^{2k} - 1)$$
 so $2^{2k} - 1 = 3j$ for some integer j
So $2^{2(k+1)} - 1 = 2^{2k+2} - 1 = 4(2^{2k}) - 1 = 4(3j+1) - 1$
= $12j+3 = 3(4j+1)$

Therefore 3 | $(2^{2(k+1)}-1)$ which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

Checkerboard Tiling

• Prove that a $2^n \times 2^n$ checkerboard with one square removed can be tiled with:

- **1.** Let P(n) be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with \square . We prove P(n) for all $n \ge 1$ by induction on n.
- 2. Base Case: n=1

- **1.** Let P(n) be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with \square . We prove P(n) for all $n \ge 1$ by induction on n.
- 2. Base Case: n=1
- **3.** Inductive Hypothesis: Assume P(k) for some arbitrary integer $k \ge 1$
- 4. Inductive Step: Prove P(k+1)

Apply IH to each quadrant then fill with extra tile.