CSE 311: Foundations of Computing

Lecture 12: Primes, GCD

Last Time: Modular Arithmetic

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$ there exist unique integers q, r with $0 \leq r<d$ such that $a=d q+r$.

Define "div" by $q=a \operatorname{div} d$ and "mod" by $r=a \bmod d$

Can then write a as

$$
a=(a \operatorname{div} d) \times d+(a \bmod d)
$$

Last Time: Modular Arithmetic

$$
\begin{aligned}
& a+7 b=(a+b) \bmod 7 \\
& a \times_{7} b=(a \times b) \bmod 7
\end{aligned}
$$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Replace number line with a clock. Taking m steps returns back to the same place.

Form of arithmetic using only a finite set of numbers $\{0,1,2,3, \ldots, m-1\}$

Unclear (so far) that modular arithmetic has the same properties as ordinary arithmetic....

Last Time: Modular Arithmetic

Idea: Find replacement for "=" that works for modular arithmetic
" $=$ " on ordinary numbers allows us to solve problems, e.g.

- add / subtract numbers from both sides of equations
- substitute "=" values in equations

Definition: "a is congruent to b modulo m"

$$
\text { For } a, b, m \in \mathbb{Z} \text { with } m>0
$$

$$
a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
$$

Equivalently, $a \equiv b(\bmod m)$ iff $a=b+k m$ for some $k \in \mathbb{Z}$.

Last Time: Modular Arithmetic

Definition: " a is congruent to b modulo m "

$$
\begin{aligned}
& \text { For } a, b, m \in \mathbb{Z} \text { with } m>0 \\
& \qquad a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
\end{aligned}
$$

Equivalently, $a \equiv b(\bmod m)$ iff $a=b+k m$ for some $k \in \mathbb{Z}$.

$$
\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m}) \text { if and only if } a \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m} .
$$

l.e., a and b are congruent modulo m iff a and b steps go to the same spot on the "clock" with m numbers

Last Time: Modular Arithmetic: Properties

$$
\begin{aligned}
& \text { If } \boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m}) \text { and } \boldsymbol{b} \equiv \boldsymbol{c}(\bmod \boldsymbol{m}), \\
& \text { then } \boldsymbol{a} \equiv \boldsymbol{c}(\bmod \boldsymbol{m})
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } a \equiv b(\bmod m) \text { and } c \equiv \boldsymbol{c}(\bmod m), \\
& \text { then } a+\boldsymbol{c} \equiv b+\boldsymbol{d}(\bmod \boldsymbol{m})
\end{aligned}
$$

Corollary: If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$, then $\boldsymbol{a}+\boldsymbol{c} \equiv \boldsymbol{b}+\boldsymbol{c}(\bmod \boldsymbol{m})$

$$
\begin{aligned}
& \text { If } a \equiv b(\bmod m) \text { and } \boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m}), \\
& \text { then } a c \equiv b d(\bmod m)
\end{aligned}
$$

Corollary: If $a \equiv b(\bmod m)$, then $a c \equiv b c(\bmod m)$

Last Time：Modular Arithmetic：Properties

$$
\begin{aligned}
& \text { If } \boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m}) \text { and } \boldsymbol{b} \equiv \boldsymbol{c}(\bmod \boldsymbol{m}) \\
& \text { then } \boldsymbol{a} \equiv \boldsymbol{c}(\bmod \boldsymbol{m})
\end{aligned}
$$

If $a \equiv b(\bmod m)$ ，then $a+c \equiv b+c(\bmod m)$

If $a \equiv b(\bmod m)$ ，then $a c \equiv b c(\bmod m)$
＂三＂allows us to solve problems in modular arithmetic，e．g．
－add／subtract numbers from both sides of equations

- chains of＂\equiv＂values shows first and last are＂三＂
- substitute＂三＂values in equations（not proven yet）

Last Time: Two's Complement

Suppose that $0 \leq x<2^{n-1}$
x is represented by the binary representation of x
Suppose that $0 \leq x \leq 2^{n-1}$
$-x$ is represented by the binary representation of $2^{n}-x$

-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
1000	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110	0111

Two's complement

Key property: Twos complement representation of any number \boldsymbol{y} is equivalent to $\boldsymbol{y} \boldsymbol{\operatorname { m o d }} \mathbf{2}^{\boldsymbol{n}}$ so arithmetic works $\boldsymbol{\operatorname { m o d }} \mathbf{2}^{\boldsymbol{n}}$

Basic Applications of mod

- Two's Complement (last time)
- Hashing
- Pseudo random number generation

Hashing

Scenario:

Map a small number of data values from a large domain $\{0,1, \ldots, M-1\} \ldots$
...into a small set of locations $\{0,1, \ldots, n-1\}$ so one can quickly check if some value is present

- hash $(x)=x \bmod p$ for p a prime close to n
$-\operatorname{or} \operatorname{hash}(x)=(a x+b) \bmod p$
- Depends on all of the bits of the data
- helps avoid collisions due to similar values
- need to manage them if they occur

Pseudo-Random Number Generation

Linear Congruential method

$$
x_{n+1}=\left(a x_{n}+c\right) \bmod m
$$

Choose random x_{0}, a, c, m and produce a long sequence of x_{n} 's

Primality

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is called composite.

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a unique prime factorization

$$
\begin{aligned}
& 48=2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \\
& 591=3 \cdot 197 \\
& 45,523=45,523 \\
& 321,950=2 \cdot 5 \cdot 5 \cdot 47 \cdot 137 \\
& 1,234,567,890=2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803
\end{aligned}
$$

Euclid's Theorem

There are an infinite number of primes.
Proof by contradiction:
Suppose that there are only a finite number of primes and call the full list $p_{1}, p_{2}, \ldots, p_{n}$.

Euclid's Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list $p_{1}, p_{2}, \ldots, p_{n}$.
Define the number $P=p_{1} \cdot p_{2} \cdot p_{3} \cdot \cdots \cdot p_{n}$ and let

$$
Q=P+1 .
$$

Euclid's Theorem

There are an infinite number of primes.
Proof by contradiction:
Suppose that there are only a finite number of primes and call the full list $p_{1}, p_{2}, \ldots, p_{n}$.
Define the number $P=p_{1} \cdot p_{2} \cdot p_{3} \cdot \cdots \cdot p_{n}$ and let

$$
Q=P+1 .
$$

Case 1: Q is prime: Then Q is a prime different from all of $p_{1}, p_{2}, \ldots, p_{n}$ since it is bigger than all of them.

Case 2: $Q>1$ is not prime: Then Q has some prime factor p (which must be in the list). Therefore $p \mid P$ and $p \mid Q$ so $p \mid(Q-P)$ which means that $p \mid 1$.

Both cases are contradictions so the assumption is false.

Famous Algorithmic Problems

- Primality Testing
- Given an integer n, determine if n is prime
- Factoring
- Given an integer n, determine the prime factorization of n

Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077 285356959533479219732245215172640050726 365751874520219978646938995647494277406 384592519255732630345373154826850791702 612214291346167042921431160222124047927 4737794080665351419597459856902143413

12301866845301177551304949583849627207728535695953347 92197322452151726400507263657518745202199786469389956 47494277406384592519255732630345373154826850791702612 21429134616704292143116022212404792747377940806653514 19597459856902143413

334780716989568987860441698482126908177047949837 137685689124313889828837938780022876147116525317 43087737814467999489

367460436667995904282446337996279526322791581643 430876426760322838157396665112792333734171433968 10270092798736308917

Greatest Common Divisor

GCD (a, b) :

Largest integer d such that $d \mid a$ and $d \mid b$

- $\operatorname{GCD}(100,125)=$
- $\operatorname{GCD}(17,49)=$
- $\operatorname{GCD}(11,66)=$
- $\operatorname{GCD}(13,0)=$
- $\operatorname{GCD}(180,252)=$

GCD and Factoring

$$
\begin{aligned}
& a=2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11=46,200 \\
& b=2 \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 13=204,750
\end{aligned}
$$

$\operatorname{GCD}(\mathrm{a}, \mathrm{b})=2^{\min (3,1)} \cdot 3^{\min (1,2)} \cdot 5^{\min (2,3)} \cdot 7^{\min (1,1)} \cdot 11^{\min (1,0)} \cdot 13^{\min (0,1)}$

Factoring is expensive!
Can we compute GCD(a,b) without factoring?

Useful GCD Fact

If a and b are positive integers, then

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)
$$

Useful GCD Fact

If a and b are positive integers, then
 $$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)
$$

Proof:

By definition of $\bmod , a=q b+(a \bmod b)$ for some integer $q=a \operatorname{div} b$.
Let $d=\operatorname{gcd}(a, b)$. Then $d \mid a$ and $d \mid b$ so $a=k d$ and $b=j d$ for some integers k and j.

Therefore $(a \bmod b)=a-q b=k d-q j d=(k-q j) d$. So, $d \mid(a \bmod b)$ and since $d \mid b$ we must have $d \leq \operatorname{gcd}(b, a \bmod b)$.

Now, let $e=\operatorname{gcd}(b, a \bmod b)$. Then $e \mid b$ and $e \mid(a \bmod b)$ so $b=m e$ and $(a \bmod b)=n e$ for some integers m and n.
Therefore $a=q b+(a \bmod b)=q m e+n e=(q m+n) e$.
So, $e \mid a$ and since $e \mid b$ we must have $e \leq \operatorname{gcd}(a, b)$.
It follows that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$.

Another simple GCD fact

If a is a positive integer, $\operatorname{gcd}(a, 0)=a$.

Euclid's Algorithm

$\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b), \operatorname{gcd}(a, 0)=a$

int gcd(int a, int b)\{ /* a >= b, b >= 0 */
if (b == 0) \{
return a;
\}
else \{
return $\operatorname{gcd}(\mathrm{b}, \mathrm{a} \% \mathrm{~b})$;
\}

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.
$\operatorname{gcd}(660,126)=$

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.

$$
\left.\begin{array}{rl}
\operatorname{gcd}(660,126) & =\operatorname{gcd}(126,660 \bmod 126)
\end{array}\right)=\operatorname{gcd}(126,30) \text {) } \begin{aligned}
& =\operatorname{gcd}(30,126 \bmod 30) \\
& =\operatorname{gcd}(30,6) \\
& =\operatorname{gcd}(6,30 \bmod 6) \\
& =\operatorname{gcd}(6,0) \\
& =6
\end{aligned}
$$

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.

$$
\begin{array}{rlrl}
\operatorname{gcd}(660,126) & =\operatorname{gcd}(126,660 \bmod 126) & =\operatorname{gcd}(126,30) \\
& =\operatorname{gcd}(30,126 \bmod 30) & =\operatorname{gcd}(30,6) \\
& =\operatorname{gcd}(6,30 \bmod 6) & & =\operatorname{gcd}(6,0) \\
& =6 & &
\end{array}
$$

In tableau form:

$$
\begin{aligned}
660 & =5 * 126+30 \\
126 & =4^{*} 30+6 \\
30 & =5^{*} \quad 6+0
\end{aligned}
$$

Bézout's theorem

If a and b are positive integers, then there exist integers \boldsymbol{s} and \boldsymbol{t} such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 1 (Compute GCD \& Keep Tableau Information):

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 1 (Compute GCD \& Keep Tableau Information):

$\begin{array}{cccc} a b & b \quad a \bmod b=r & b \quad r \\ \operatorname{gcd}(35,27) & =\operatorname{gcd}(27,35 \bmod 27) & =\operatorname{gcd}(27,8) \end{array}$	$\begin{gathered} a=q * b+r \\ 35=1 * 27+8 \end{gathered}$
$=\operatorname{gcd}(8,27 \bmod 8)=\operatorname{gcd}(8,3)$	$27=3 * 8+3$
$=\operatorname{gcd}(3,8 \bmod 3) \quad=\operatorname{gcd}(3,2)$	$8=2 * 3+2$
$=\operatorname{gcd}(2,3 \bmod 2) \quad=\operatorname{gcd}(2,1)$	$3=1 * 2+1$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 2 (Solve the equations for r):

$$
\begin{array}{ll}
a=q * b+r & r=a-q * b \\
35=1 * 27+8 & 8=35-1 * 27 \\
27=3 * 8+3 & \\
8=2 * 3+2 & \\
3=1 * 2+1 & \\
2=2 * 1+0 &
\end{array}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 2 (Solve the equations for r):

$$
\begin{array}{ll}
a=q * b+r & r=a-q * b \\
35=1 * 27+8 & 8=35-1 * 27 \\
27=3 * 8+3 & 3=27-3 * 8 \\
8=2 * 3+2 & 2=8-2 * 3 \\
3=1 * 2+1 & 1=3-1 * 2 \\
2=2 * 1+0 &
\end{array}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Plug in the def of 2

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Plug in the def of 2

$$
\begin{aligned}
& =3 * 27+(-10) *(35-1 * 27) \\
& \text { Re-arrange into } \\
& =3 * 27+(-10) * 35+10 * 27 \\
& 27 \text { 's and } 35 \text { 's }=13 * 27+(-10) * 35
\end{aligned}
$$

Multiplicative inverse $\bmod m$

Suppose GCD $(a, m)=1$

By Bézout's Theorem, there exist integers s and t such that $s a+t m=1$.
$s \bmod m$ is the multiplicative inverse of a :

$$
1=(s a+t m) \bmod m=s a \bmod m
$$

Example

Solve: $7 x \equiv 1(\bmod 26)$

Example

Solve: $7 x \equiv 1(\bmod 26)$

$$
\operatorname{gcd}(26,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1
$$

$$
\begin{array}{rll}
26=7 * 3+5 & 5=26-7 * 3 \\
7=5 * 1+2 & 2=7-5 * 1 \\
5=2 * 2+1 & 1=5-2 * 2
\end{array}
$$

$$
1=5-2 *(7-5 * 1)
$$

$$
=(-7) * 2+3 * 5
$$

$$
=(-7) * 2+3 *(26-7 * 3)
$$

$$
=(-11) * 7+3 * 26
$$

Multiplicative inverse of 7 mod 26
Now $(-11) \bmod 26=15$. So, $x=15+26 k$ for $k \in \mathbb{Z}$.

Example of a more general equation

Now solve: $7 y \equiv 3(\bmod 26)$
We already computed that 15 is the multiplicative inverse of 7 modulo 26:

That is, $7 \cdot 15 \equiv 1(\bmod 26)$
By the multiplicative property of mod we have

$$
7 \cdot 15 \cdot 3 \equiv 3(\bmod 26)
$$

So any $y \equiv 15 \cdot 3(\bmod 26)$ is a solution.
That is, $y=19+26 k$ for any integer k is a solution.

Math mod a prime is especially nice

$\operatorname{gcd}(a, m)=1$ if m is prime and $0<a<m$ so
can always solve these equations mod a prime.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

$\bmod 7$

