
CSE 311: Foundations of Computing

Lecture 12:  Primes, GCD



For	𝑎 ∈ ℤ, 𝑑 ∈ ℤ with	𝑑 > 0
there	exist	unique integers	q,	r	with	0 ≤ 𝑟 < 𝑑
such	that	𝑎 = 𝑑𝑞 + 𝑟.

Define “div” by q = a div d 
and “mod” by r = a mod d

Can then write a as

Last Time: Modular Arithmetic

a = (a div d) × d + (a mod d)

Division	Theorem



Last Time: Modular Arithmetic

a +7 b = (a + b) mod 7
a ´7 b = (a ´ b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5
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Replace number line with a clock. Taking m
steps returns back to the same place.

Form of arithmetic using only a finite set of 
numbers {0, 1, 2, 3, ..., m – 1}

Unclear (so far) that modular arithmetic has 
the same properties as ordinary arithmetic....



Last Time: Modular Arithmetic

For	𝑎, 𝑏,𝑚 ∈ ℤ with	𝑚 > 0
𝑎 ≡ 𝑏	 mod	𝑚 ↔ 𝑚	|	(𝑎	 − 𝑏)

Definition:	“a	is	congruent	to	b	modulo	m”

Idea: Find replacement for “=” that works for modular arithmetic

“=” on ordinary numbers allows us to solve problems, e.g.
• add / subtract numbers from both sides of equations
• substitute “=” values in equations

Equivalently, 𝑎 ≡ 𝑏	 mod	𝑚 iff 𝑎 = 𝑏 + 𝑘𝑚 for some 𝑘 ∈ ℤ.



Last Time: Modular Arithmetic

For	𝑎, 𝑏,𝑚 ∈ ℤ with	𝑚 > 0
𝑎 ≡ 𝑏	 mod	𝑚 ↔ 𝑚	|	(𝑎	 − 𝑏)

Definition:	“a	is	congruent	to	b	modulo	m”

Equivalently, 𝑎 ≡ 𝑏	 mod	𝑚 iff 𝑎 = 𝑏 + 𝑘𝑚 for some 𝑘 ∈ ℤ.

𝒂	 ≡ 	𝒃	(𝐦𝐨𝐝	𝒎) if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

I.e., 𝒂 and 𝒃 are congruent modulo m iff 𝒂 and 𝒃 steps
go to the same spot on the “clock” with m numbers



Last Time: Modular Arithmetic: Properties

If 𝒂	 ≡ 	𝒃	(𝐦𝐨𝐝	𝒎) and 𝒃	 ≡ 𝒄	(𝐦𝐨𝐝	𝒎),
then 𝒂 ≡ 𝒄	(𝐦𝐨𝐝	𝒎)

If 𝒂	 ≡ 	𝒃	(𝐦𝐨𝐝	𝒎) and 𝒄	 ≡ 	𝒅	(𝐦𝐨𝐝	𝒎),
then 𝒂 + 𝒄	 ≡ 	𝒃 + 𝒅	(𝐦𝐨𝐝	𝒎)

If 𝒂	 ≡ 	𝒃	(𝐦𝐨𝐝	𝒎), then 𝒂 + 𝒄	 ≡ 	𝒃 + 𝒄	(𝐦𝐨𝐝	𝒎)Corollary:

If 𝒂 ≡ 𝒃	(𝐦𝐨𝐝	𝒎) and 𝒄 ≡ 𝒅	(𝐦𝐨𝐝	𝒎),
then 𝒂𝒄	 ≡ 	𝒃𝒅	(𝐦𝐨𝐝	𝒎)

If 𝒂	 ≡ 	𝒃	(𝐦𝐨𝐝	𝒎), then 𝒂𝒄	 ≡ 	𝒃𝒄	(𝐦𝐨𝐝	𝒎)Corollary:



Last Time: Modular Arithmetic: Properties

If 𝒂	 ≡ 	𝒃	(𝐦𝐨𝐝	𝒎) and 𝒃	 ≡ 𝒄	(𝐦𝐨𝐝	𝒎),
then 𝒂 ≡ 𝒄	(𝐦𝐨𝐝	𝒎)

If 𝒂	 ≡ 	𝒃	(𝐦𝐨𝐝	𝒎), then 𝒂 + 𝒄	 ≡ 	𝒃 + 𝒄	(𝐦𝐨𝐝	𝒎)

If 𝒂	 ≡ 	𝒃	(𝐦𝐨𝐝	𝒎), then 𝒂𝒄	 ≡ 	𝒃𝒄	(𝐦𝐨𝐝	𝒎)

“≡” allows us to solve problems in modular arithmetic, e.g.
• add / subtract numbers from both sides of equations
• chains of “≡” values shows first and last are “≡”
• substitute “≡	” values in equations (not proven yet)



Last Time: Two’s Complement

Suppose that 0 ≤ 𝑥 < 2EFG ,
𝑥 is represented by the binary representation of 𝑥

Suppose that 0 ≤ 𝑥 ≤ 2EFG , 
−𝑥 is represented by the binary representation of 2E − 𝑥

Key property: Twos complement representation of any number 𝒚
is equivalent to 𝒚	𝐦𝐨𝐝	𝟐𝒏 so arithmetic works 𝐦𝐨𝐝	𝟐𝒏

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

Two’s	complement



Basic Applications of mod

• Two’s Complement (last time)
• Hashing 
• Pseudo random number generation



Hashing

Scenario:  
Map a small number of data values from a large 
domain 0, 1, … ,𝑀 − 1 ...
...into a small set of locations 0,1, … , 𝑛 − 1 so 
one can quickly check if some value is present

• hash 𝑥 = 𝑥	mod	𝑝	for 𝑝 a prime close to 𝑛
– or hash 𝑥 = (𝑎𝑥 + 𝑏)	mod	𝑝

• Depends on all of the bits of the data 
– helps avoid collisions due to similar values
– need to manage them if they occur



Pseudo-Random Number Generation

Linear Congruential method

𝑥ESG = 𝑎	𝑥E + 𝑐 	mod	𝑚

Choose random	𝑥U, 𝑎, 𝑐, 𝑚 and produce
a long sequence of 𝑥E’s



Primality

An integer p greater than 1 is called prime if the 
only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not 
prime is called composite.



Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a 
unique prime factorization

48 =  2 • 2 • 2 • 2 • 3
591 = 3 • 197
45,523 = 45,523
321,950 = 2 • 5 • 5 • 47 • 137
1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803



Euclid’s Theorem

There are an infinite number of primes.
Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list 𝑝G, 𝑝V, … , 𝑝E.



Euclid’s Theorem

There are an infinite number of primes.
Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list 𝑝G, 𝑝V, … , 𝑝E.
Define the number 	𝑃 = 𝑝GX 𝑝V X 𝑝Y X ⋯	X 𝑝E and let 

𝑄 = 𝑃 + 1.



Euclid’s Theorem

There are an infinite number of primes.
Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list 𝑝G, 𝑝V, … , 𝑝E.
Define the number 	𝑃 = 𝑝GX 𝑝V X 𝑝Y X ⋯	X 𝑝E and let 

𝑄 = 𝑃 + 1.
Case 1: 𝑄	is prime: Then 𝑄 is a prime different from 
all of 𝑝G, 𝑝V, … , 𝑝E since it is bigger than all of them.
Case 2: 𝑄 > 1 is not prime:  Then 𝑄 has some prime 
factor 𝑝 (which must be in the list).   Therefore 𝑝|𝑃
and 𝑝|𝑄 so 𝑝| 𝑄	– 	𝑃 	which means that	𝑝|1.
Both cases are contradictions so the assumption is 
false.



Famous Algorithmic Problems

• Primality Testing
– Given an integer 𝑛, determine if 𝑛 is prime

• Factoring
– Given an integer 𝑛, determine the prime 

factorization of 𝑛



Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413



12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514
19597459856902143413

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317
43087737814467999489

367460436667995904282446337996279526322791581643
430876426760322838157396665112792333734171433968
10270092798736308917



Greatest Common Divisor

GCD(a,	b):	
Largest integer 𝑑 such that 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏

• GCD(100,	125) =	
• GCD(17,	49)	 =	
• GCD(11,	66) =
• GCD(13,	0)	 =	
• GCD(180,	252)	 =



GCD and Factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1) • 11min(1,0) • 13min(0,1)

Factoring is expensive!    
Can we compute GCD(a,b) without factoring?



Useful GCD Fact

If	a and	b are	positive	integers,	then	
gcd(a,b) = gcd(b,	a	mod b)



Useful GCD Fact

If	a and	b are	positive	integers,	then	
gcd(a,b)	= gcd(b,	a	mod b)

Proof:
By	definition	of	mod,	𝑎 = 𝑞𝑏 + (𝑎	mod	𝑏) for	some	integer	𝑞 = 𝑎	div	𝑏.		

Let	𝑑 = gcd	(𝑎, 𝑏).		Then	𝑑|𝑎 and	𝑑|𝑏 so	𝑎 = 𝑘𝑑 and	𝑏 = 𝑗𝑑
for	some	integers	𝑘 and	𝑗.	

Therefore	(𝑎	mod	𝑏) 	= 	𝑎	– 𝑞𝑏	 = 	𝑘𝑑	– 𝑞𝑗𝑑	 = 	 (𝑘	– 𝑞𝑗)𝑑.		
So,	𝑑|(𝑎	mod	𝑏) and	since	𝑑|𝑏 we	must	have	𝑑 ≤ gcd	(𝑏, 𝑎	mod	𝑏).

Now,	let	𝑒 = gcd	(𝑏, 𝑎	mod	𝑏).		Then	𝑒|𝑏 and	𝑒	|(𝑎	mod	𝑏) so
𝑏 = 𝑚𝑒 and	(𝑎	mod	𝑏) = 𝑛𝑒 for	some	integers	𝑚 and	𝑛.				

Therefore		𝑎 = 𝑞𝑏 + (𝑎	𝑚𝑜𝑑	𝑏) 	= 𝑞𝑚𝑒 + 	𝑛𝑒 = (𝑞𝑚 + 𝑛)𝑒.				
So,	𝑒|𝑎 and	since	𝑒|𝑏 we	must	have	𝑒 ≤ gcd	(𝑎, 𝑏).

It	follows	that	gcd	(𝑎, 𝑏) = gcd	(𝑏, 𝑎	mod	𝑏).



Another simple GCD fact

If	a	is	a	positive	integer,		gcd(a,0) = a.



Euclid’s Algorithm

gcd(a,	b)	=	gcd(b,	a	mod	b),	gcd(a,0)=a

int gcd(int a, int b){ /* a >= b, b >= 0 */
if (b == 0) {

return a;
}
else {

return gcd(b, a % b);
}

Example:	GCD(660,	126)



Euclid’s Algorithm

gcd(660,126)	=

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎	mod	𝑏 to reduce 
numbers until you get gcd	(𝑔, 0) = 𝑔.

gcd(660,126)	



Euclid’s Algorithm

gcd(660,126)	=	gcd(126,	660	mod	126) =	gcd(126,	30)
=	gcd(30,	126	mod	30) =	gcd(30,	6)
=	gcd(6,	30	mod	6) =	gcd(6,	0)
=	6

gcd(660,126)	

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎	mod	𝑏 to reduce 
numbers until you get gcd	(𝑔, 0) = 𝑔.



Euclid’s Algorithm

gcd(660,126)	=	gcd(126,	660	mod	126) =	gcd(126,	30)
=	gcd(30,	126	mod	30) =	gcd(30,	6)
=	gcd(6,	30	mod	6) =	gcd(6,	0)
=	6

gcd(660,126)	

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎	mod	𝑏 to reduce 
numbers until you get gcd	(𝑔, 0) = 𝑔.

660	=	5	*	126	+	30
126	=	4	*	 30	+			6
30	=	5	*	 6	+			 0

In tableau form:



Bézout’s theorem

If	a and	b are	positive	integers,	then	there	exist	
integers	s and	t such	that	

gcd(a,b)	=	sa	+	tb.



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 1 (Compute GCD & Keep Tableau Information):

gcd(35,	27)	=	gcd(27,	35	mod	27)	=	gcd(27,	8)	 35	=	1	*	27	+	8	
a b b a  mod b = r b r a  = q * b  + r



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 1 (Compute GCD & Keep Tableau Information):

gcd(35,	27)	=	gcd(27,	35	mod	27)	=	gcd(27,	8)	 35	=	1	*	27	+	8
=	gcd(8,	27	mod	8)			 =	gcd(8,	3)	 27	=	3	*	8		 +	3
=	gcd(3,	8	mod	3)			 =	gcd(3,	2)										8		=	2	*	3		 +	2
=	gcd(2,	3	mod	2)				 =	gcd(2,	1)	 3		=	1	*	2		 +	1
=	gcd(1,	2	mod	1)	 =	gcd(1,	0)

a b b a  mod b = r b r a  = q * b  + r



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 2 (Solve the equations for r):

a   =  q * b  + r

35	=	1	*	27	+	8
27	=	3	*	8			+	3
8			=	2	*	3		 +	2
3 =	1	*	2			+	1
2					=	2	*	1			+	0

r  =  a  -- q * b
8	=	35	– 1	*	27



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 2 (Solve the equations for r):

a   =  q * b  + r

35	=	1	*	27	+	8
27	=	3	*	8			+	3
8			=	2	*	3		 +	2
3 =	1	*	2			+	1
2					=	2	*	1			+	0

r  =  a  -- q * b
8	=	35	– 1	*	27
3	=	27	– 3	*	8
2	=		8		– 2	*	3
1	=		3		– 1	*	2



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	– 1	*	(8	– 2	*	3)
=			3	– 8	+	2	*	3
=	(–1)	*	8	+	3	*	3

Plug in the def of 2

Re-arrange into
3’s and 8’s



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	– 1	*	(8	– 2	*	3)
=			3	– 8	+	2	*	3
=	(–1)	*	8	+	3	*	3

=	(–1)	*	8	+	3	*	(27	– 3	*	8)
=	(–1)	*	8	+	3	*	27	+	(–9)	*	8
=			3	*	27		+	(–10)	*	8

=			3	*	27		+	(–10)	*	(35	– 1	*	27)
=			3	*	27			+	(–10)	*	35	+	10	*	27
=			13	*	27	+	(–10)	*	35

Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s

Re-arrange into
27’s and 35’s



Multiplicative inverse mod	𝑚

Suppose GCD 𝑎,𝑚 = 1

By Bézout’s Theorem, there exist integers 𝑠 and 𝑡
such that 𝑠𝑎 + 𝑡𝑚 = 1.

𝑠	mod	𝑚 is the multiplicative inverse of 𝑎:
1 = 𝑠𝑎 + 𝑡𝑚 	mod	𝑚 = 𝑠𝑎	mod	𝑚



Example

Solve:  7𝑥 ≡ 1	(mod	26)



Example

Solve:  7𝑥 ≡ 1	(mod	26)

gcd	(26, 7) 	= 	gcd	(7, 5) 	= 	gcd	(5, 2) 	= 	gcd	(2, 1) 	= 	1

26 = 	7 ∗ 3	 + 	5											5	 = 	26– 	7 ∗ 3
7		 = 	5 ∗ 1	 + 	2											2	 = 		7– 		5 ∗ 1
5		 = 	2 ∗ 2	 + 	1											1	 = 	5– 			2 ∗ 2

1			 = 												5								– 			2 ∗ (7	– 	5 ∗ 1)
= 	 (– 7) ∗ 2					 + 	3 ∗ 5
= 	 – 7 ∗ 2					 + 	3 ∗ (26	– 	7 ∗ 3)
= 		 −11 ∗ 7			 + 	3 ∗ 26

Now (−11)	mod	26	 = 15.   So, 𝑥 = 15 + 26𝑘		for 𝑘	 ∈ 	ℤ.
Multiplicative inverse of 7 mod 26



Example of a more general equation

Now solve:  7𝑦 ≡ 3	(mod	26)

We already computed that 15 is the multiplicative 
inverse of 7 modulo 26:

That is,  7 X 15 ≡ 1	(mod	26)

By the multiplicative property of mod we have
7 X 15 X 3 ≡ 3	(mod	26)

So any 𝑦 ≡ 15 X 3 mod	26 	is a solution. 
That is, 𝑦 = 19 + 26𝑘 for any integer 𝑘 is a solution.



Math mod a prime is especially nice

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

gcd	(𝑎,𝑚) = 1 if 𝑚 is prime and 0 < 𝑎 < 𝑚	 so 
can always solve these equations mod a prime.

mod 7


