CSE 311: Foundations of Computing

Lecture 12: Primes, GCD
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Last Time: Modular Arithmetic

Division Theorem

Fora € 7Z,d € Zwithd >0
there exist unique integers g, rwith0 <r < d
\ such thata = dqg + .

J

Define “div’ by g = a div d
and “mod” by r = a mod d

Can then write a as a=(adivd)xd+ (amod d)




Last Time: Modular Arithmetic

at+,b=(a+b)mod? 7
ax;b=(axb)mod?7

Replace number line with a clock. Taking m
steps returns back to the same place.

Form of arithmetic using only a finite set of
nhumbers {0, 1, 2, 3, ..., m - 1}

Unclear (so far) that modular arithmetic has
the same properties as ordinary arithmetic....
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Last Time: Modular Arithmetic

Idea: Find replacement for “=" that works for modular arithmetic

“=" on ordinary nhumbers allows us to solve problems, e.g.
e add / subtract numbers from both sides of equations
* substitute “=" values in equations

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0
a=b(modm) o m|(a —b)

\_

Equivalently, a = b (mod m) iff a = b + km for some k € Z.



Last Time: Modular Arithmetic

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0
a=b(modm) & m|(a —b)

\_

Equivalently, a = b (mod m) iff a = b + km for some k € Z.

a = b (modm) if and only if amod m = b mod m.

l.e., a and b are congruent modulo m iff a and b steps
go to the same spot on the “clock” with m numbers



Last Time: Modular Arithmetic: Properties

Ifa = b (modm) and b = c (mod m),
then a = ¢ (mod m)

Ifa = b (modm) and ¢ = d (mod m),
thena+c = b+ d (mod m)

Corollary: [Ifa = b (mod m),thena+c = b+ ¢ (mod m)

Ifa =b (imodm) and c = d (mod m),
then ac = bd (mod m)

Corollary: |Ifa = b (mod m), then ac = bc (mod m)




Last Time: Modular Arithmetic: Properties

Ifa = b (modm) and b = ¢ (mod m),
then a = ¢ (mod m)

If a

b (mod m),thena+c = b + c (mod m)

If a

b (mod m), then ac = bc (mod m)

“—”

allows us to solve problems in modular arithmetic, e.g.
 add / subtract numbers from both sides of equations
* chains of “=" values shows first and last are “="

. substltute “= " values in equations (nhot proven yet)



Last Time: Two’'s Complement

Suppose that 0 < x < 2™1 ,

x is represented by the binary representation of x
Suppose that 0 < x < 2™ ,

—x is represented by the binary representation of 2" — x

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1000 1001 1010 1011 1100 1101 1110 1111 O0OO0OO OOO1 0010 0011 0100 0101 0110 oO111

Two’s complement

Key property: Twos complement representation of any number y
Is equivalent to y mod 2" so arithmetic works mod 2"




Basic Applications of mod

 Two’s Complement (last time)
 Hashing
 Pseudo random number generation



Hashing

Scenario:

Map a small nhumber of data values from a large
domain {0,1,..., M — 1} ...

...into a small set of locations {0,1,...,n — 1} so
one can quickly check if some value is present

* hash(x) = x mod p for p a prime close to n
—or hash(x) = (ax + b) mod p

 Depends on all of the bits of the data
— helps avoid collisions due to similar values
— need to manage them if they occur



Pseudo-Random Number Generation

Linear Congruential method

Xn+q1 = (@ x, +c) mod m

Choose random x,, a, ¢, m and produce
a long sequence of x,,’s



Primality

An integer p greater than 1 is called prime if the
only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not
prime is called composite.



Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a
unique prime factorization

48 = 22223

591 =3 197

45,523 = 45,523

321,950 =25°5+47 137
1,234,567,890 =233+ 5+ 3,607 3,803



Euclid’'s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list 4, p,, ..., py,.-



Euclid’'s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list 4, p,, ..., py,.-

Define the number P = py-p, - p3 - -+ - p,, and let
Q=P+1.



Euclid’'s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite nhumber of primes
and call the full list p,, p,, ..., py,.-

Define the number P = p;-p, - p3 - -+ - p,, and let
Q=P+1.

Case 1: Q) is prime: Then ( is a prime different from
all of n,, p», ..., p,, since it is bigger than all of them.

Case 2: ) > 1 is not prime: Then () has some prime
factor p (which must be in the list). Therefore p|P
and p|Q so p|(Q - P) which means that p|1.

Both cases are contradictions so the assumption is
false. N



Famous Algorithmic Problems

* Primality Testing
— Given an integer n, determine if n is prime
* Factoring

— Given an integer n, determine the prime
factorization of n



Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413



12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514
19597459856902143413

D—
[

3347807169895689878604416984821269081/77047949837
137685689124313889828837938780022876147116525317
43087737814467999489

N

N

367460436667995904282446337996279526322791581643
4308764267603228381573966651127/92333734171433968
10270092798736308917



Greatest Commmon Divisor

GCD(a, b):
Largest integer d suchthatd | aand d | b

. GCD(100, 125)
. GCD(17, 49)
. GCD(11, 66)
. GCD(13, 0)

. GCD(180, 252)




GCD and Factoring

a=23¢3+52+7+11=46,200
b=2¢3253+7+13=204,750

GCD(a, b) = 2min(3,1) « 3min(1,2) o 5min(2,3) o 7min(1,1) ¢ 11 min(1,0) « 13min(0,1)

Factoring is expensive!
Can we compute GCD(a,b) without factoring?



Useful GCD Fact

If a and b are positive integers, then
gcd(a,b) = ged(b, a mod b)



Useful GCD Fact

If a and b are positive integers, then
gcd(a,b) = ged(b, a mod b)

Proof:
By definition of mod, a = gb + (a mod b) for some integer g = a div b.

Let d = gcd(a,b). Thend|aandd|bsoa = kd and b = jd
for some integers k and j.

Therefore (amod b) = a-qb = kd -qjd = (k-qj)d.
So, d|(a mod b) and since d|b we must have d < gcd(b, a mod b).

Now, let e = gcd(b,a mod b). Then e|b and e |(a mod b) so
b = me and (a mod b) = ne for some integers m and n.

Therefore a = gb + (amod b) = gqme + ne = (gm + n)e.
So, e|a and since e|b we must have e < gcd(a, b).

It follows that gcd(a, b) = ged(b,a mod b). W



Another simple GCD fact

If a is a positive integer, gcd(a,0) = a.



Euclid’s Algorithm

gcd(a, b) = gcd(b, a mod b), gcd(a,0)=a

int gcd(int a, int b){ /* a >= b, b >= 0 */

if (b == 0) {
return a;

}

else {

¥

return gcd(b, a % b);

Example: GCD(660, 126)




Euclid’s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) =



Euclid’s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) =gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
=6



Euclid’s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) =gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
=6

In tableau form:

660 =5 * 126 + 30
126=4* 30+ (6)
30=5* 6+ 0



Bézout’s theorem

If a and b are positive integers, then there exist
integers s and t such that
gcd(a,b) = sa + tb.



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 1 (Compute GCD & Keep Tableau Information):

a b b a modb-=r b r a =q*b +r
gcd(35,27) =gcd(27,35mod 27) =gcd(27,8) [35=1*27+8




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 1 (Compute GCD & Keep Tableau Information):

a b b a modb=r b r

gcd(35,27) =gcd(27,35 mod 27) = gcd(27, 8)
= gcd(8, 27 mod 8)
= gcd (3, 8 mod 3)

= gcd(2, 3 mod 2)

= gcd(1, 2 mod

1)

= gcd(8, 3)
= gcd(3, 2)
=gcd(2, 1)
= gcd(1, 0)

a =q*b +r

35=1*27+8
27=3*8 +3
8 =2*3 +2
3=1*2 +1




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 2 (Solve the equations for r):

a =q*b +rv r=a-q*b
35=1*27+8 8=35-1%27
27=3*8 +3

8 =2*3 42

3 =1*2 +1

2 =2*1 +0



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 2 (Solve the equations for r):

a =q*b +rv r=a-q*b
35=1*27+8 8=35-1%27
27=3*8 +3 3=27-3*8
8 =2*3 +2 2=8-2%3
3 =1*%2 +1 1=3-1%2

2 =2*1 +0



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):
Plug in the def of 2

8 = 35-1*Q7) 1= 3-1*(8-2%3)
= 3-8+2*3 Re-arrange into
(_1)*8_|_ 3 *3 3’'sand 8's
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Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):
Plug in the def of 2

8 =35 - 1%27) 1= 3-1*%(8-2%3)
= 3-8+2*3 Re-arrange into
(_1) *8 4+ 3*3 3’s and 8’s
Plug in the def of 3
=(-1)*8+3*(27-3*8)
(-1)*8+3*27 4+ (-9) *8

3*27 + (-10) * 8 Re-arrange into
8’'s and 27’s

W
1
N
~
|
w

|

DN
1
o0
|
N
|

—
|
o
|
p—

3%27 + (-10) * (35 - 1*27)
3%27 4 (-10) * 35 + 10 * 27
13 * 27 4 (-10) * 35

Re-arrange into
27’s and 35’s



Multiplicative inverse mod m

Suppose GCD(a,m) = 1

By Bézout’s Theorem, there exist integers s and ¢t
such that sa + tm = 1.

s mod m is the multiplicative inverse of a:
1 =(sa+tm)modm = samodm



Example

Solve: 7x = 1 (mod 26)



Example

Solve: 7x = 1 (mod 26)

gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26= 73 + 5 5 = 26-7%3
7 =5%x1 4+ 2 2 = 7- 5x%1
5 =2x2+4+1 1 = 5- 2%2

1 = 5 - 2x(7-5%1)
(-7)*x2 + 3%5
(-7)*x2 + 3%(26- 7 x3)

(—11)*x7 4+ 3 %26
e Multiplicative inverse of 7 mod 26

Now (—11) mod 26 = 15. So,x = 15 + 26k fork € Z



Example of a more general equation

Now solve: 7y = 3 (mod 26)

We already computed that 15 is the multiplicative
inverse of 7 modulo 26:

Thatis, 7-15 =1 (mod 26)

By the multiplicative property of mod we have
7-15-3 = 3 (mod 26)

Soany y =15 -3 (mod 26) is a solution.

That is, y = 19 + 26k for any integer k is a solution.



0

0 (0

0

ocd(a,m) =1lifmisprimeand 0 < a <m so
can always solve these equations mod a prime.

Math mod a prime is especially nice

mod 7



