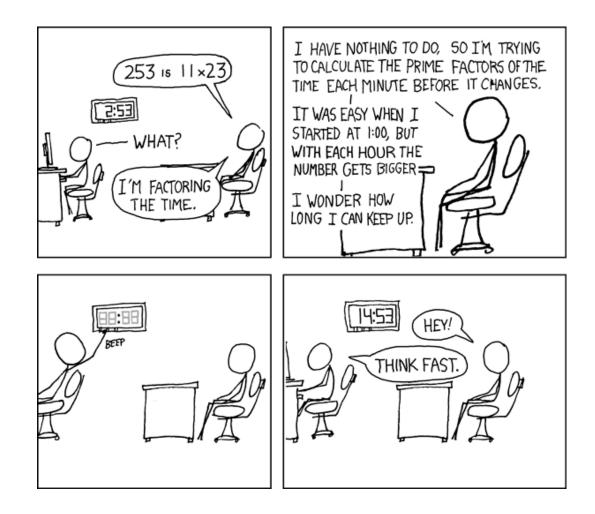
CSE 311: Foundations of Computing

Lecture 12: Primes, GCD



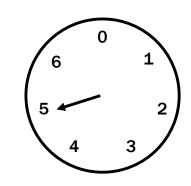
For $a \in \mathbb{Z}$, $d \in \mathbb{Z}$ with d > 0there exist *unique* integers q, r with $0 \le r < d$ such that a = dq + r.

Define "div" by $q = a \operatorname{div} d$ and "mod" by $r = a \operatorname{mod} d$

Can then write *a* as

$$a = (a \operatorname{div} d) \times d + (a \operatorname{mod} d)$$

 $a +_7 b = (a + b) \mod 7$ $a \times_7 b = (a \times b) \mod 7$



+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Replace number line with a clock. Taking *m* steps returns back to the same place.

Form of arithmetic using only a finite set of numbers $\{0, 1, 2, 3, ..., m - 1\}$

Unclear (so far) that modular arithmetic has the same properties as ordinary arithmetic....

Idea: Find replacement for "=" that works for modular arithmetic

- "=" on ordinary numbers allows us to solve problems, e.g.
 - add / subtract numbers from both sides of equations
 - substitute "=" values in equations

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Equivalently, $a \equiv b \pmod{m}$ iff a = b + km for some $k \in \mathbb{Z}$.

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Equivalently, $a \equiv b \pmod{m}$ iff a = b + km for some $k \in \mathbb{Z}$.

 $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

I.e., *a* and *b* are congruent modulo m iff *a* and *b* steps go to the same spot on the "clock" with m numbers

Last Time: Modular Arithmetic: Properties

If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Corollary: If $a \equiv b \pmod{m}$, then $a + c \equiv b + c \pmod{m}$

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

Corollary: If $a \equiv b \pmod{m}$, then $ac \equiv bc \pmod{m}$

Last Time: Modular Arithmetic: Properties

If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$

If $a \equiv b \pmod{m}$, then $a + c \equiv b + c \pmod{m}$

If
$$a \equiv b \pmod{m}$$
, then $ac \equiv bc \pmod{m}$

" \equiv " allows us to solve problems in modular arithmetic, e.g.

- add / subtract numbers from both sides of equations
- chains of " \equiv " values shows first and last are " \equiv "
- substitute " \equiv " values in equations (not proven yet)

Last Time: Two's Complement

Suppose that $0 \le x < 2^{n-1}$ x is represented by the binary representation of x Suppose that $0 \le x \le 2^{n-1}$ -x is represented by the binary representation of $2^n - x$ -2 -1 -8 -6 -5 -4 -3 0 1 2 3 4 5 6 7 -7 1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111 Two's complement

Key property: Twos complement representation of any number y is equivalent to $y \mod 2^n$ so arithmetic works $\mod 2^n$

Basic Applications of mod

- Two's Complement (last time)
- Hashing
- Pseudo random number generation

Scenario:

Map a small number of data values from a large domain $\{0, 1, ..., M - 1\}$ into a small set of locations $\{0, 1, ..., n - 1\}$ so

one can quickly check if some value is present

- hash(x) = x mod p for p a prime close to n
 or hash(x) = (ax + b) mod p
- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur

Linear Congruential method

$$x_{n+1} = (a x_n + c) \mod m$$

Choose random x_0 , a, c, m and produce a long sequence of x_n 's An integer *p* greater than 1 is called *prime* if the only positive factors of *p* are 1 and *p*.

A positive integer that is greater than 1 and is not prime is called *composite*.

Every positive integer greater than 1 has a unique prime factorization

48 = 2 • 2 • 2 • 2 • 3 591 = 3 • 197 45,523 = 45,523 321,950 = 2 • 5 • 5 • 47 • 137 1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list p_1, p_2, \dots, p_n .

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list $p_1, p_2, ..., p_n$.

Define the number $P = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n$ and let Q = P + 1.

There are an infinite number of primes.

Proof by contradiction:

- Suppose that there are only a finite number of primes and call the full list p_1, p_2, \dots, p_n .
- Define the number $P = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n$ and let Q = P + 1.

Case 1: Q is prime: Then Q is a prime different from all of p_1, p_2, \dots, p_n since it is bigger than all of them.

Case 2: Q > 1 is not prime: Then Q has some prime factor p (which must be in the list). Therefore p|P and p|Q so p|(Q - P) which means that p|1.

Both cases are contradictions so the assumption is false.

Famous Algorithmic Problems

- Primality Testing
 - Given an integer n, determine if n is prime
- Factoring
 - Given an integer n, determine the prime factorization of n

Factor the following 232 digit number [RSA768]:

GCD(a, b):

Largest integer *d* such that $d \mid a$ and $d \mid b$

- GCD(100, 125) =
- GCD(17, 49) =
- GCD(11, 66) =
- GCD(13, 0) =
- GCD(180, 252) =

 $a = 2^3 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11 = 46,200$

 $b = 2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 13 = 204,750$

 $GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 1^{1}^{\min(1,0)} \cdot 1^{3}^{\min(0,1)}$

Factoring is expensive! Can we compute GCD(a,b) without factoring?

If *a* and *b* are positive integers, then gcd(*a*,*b*) = gcd(*b*, *a* mod *b*)

If *a* and *b* are positive integers, then gcd(*a*,*b*) = gcd(*b*, *a* mod *b*)

Proof:

By definition of mod, $a = qb + (a \mod b)$ for some integer $q = a \operatorname{div} b$.

Let d = gcd(a, b). Then d|a and d|b so a = kd and b = jdfor some integers k and j.

Therefore $(a \mod b) = a - qb = kd - qjd = (k - qj)d$. So, $d|(a \mod b)$ and since d|b we must have $d \leq gcd(b, a \mod b)$.

Now, let $e = \gcd(b, a \mod b)$. Then $e \mid b$ and $e \mid (a \mod b)$ so b = me and $(a \mod b) = ne$ for some integers m and n.

Therefore $a = qb + (a \mod b) = qme + ne = (qm + n)e$. So, $e \mid a$ and since $e \mid b$ we must have $e \leq gcd(a, b)$.

It follows that $gcd(a, b) = gcd(b, a \mod b)$.

Another simple GCD fact

If a is a positive integer, gcd(a,0) = a.

```
gcd(a, b) = gcd(b, a mod b), gcd(a,0)=a
```

```
int gcd(int a, int b){ /* a >= b, b >= 0 */
    if (b == 0) {
        return a;
    }
    else {
        return gcd(b, a % b);
    }
```

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

gcd(660,126) =

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

$$gcd(660,126) = gcd(126, 660 \mod 126) = gcd(126, 30)$$

= $gcd(30, 126 \mod 30) = gcd(30, 6)$
= $gcd(6, 30 \mod 6) = gcd(6, 0)$
= 6

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

$$gcd(660,126) = gcd(126, 660 \mod 126) = gcd(126, 30)$$

= $gcd(30, 126 \mod 30) = gcd(30, 6)$
= $gcd(6, 30 \mod 6) = gcd(6, 0)$
= 6

In tableau form:

660 = 5 * 126 + 30126 = 4 * 30 + 630 = 5 * 6 + 0 If *a* and *b* are positive integers, then there exist integers *s* and *t* such that gcd(a,b) = sa + tb.

• Can use Euclid's Algorithm to find *s*, *t* such that

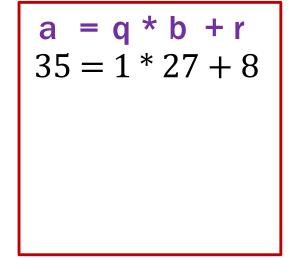
gcd(a,b) = sa + tb

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 1 (Compute GCD & Keep Tableau Information):

abamodbra= q * b + rgcd(35, 27) = gcd(27, 35 mod 27) = gcd(27, 8)gcd(27, 8)35 = 1 * 27 + 8



• Can use Euclid's Algorithm to find s, t such that gcd(a, b) = sa + tb

Step 1 (Compute GCD & Keep Tableau Information):

a bb a mod b = rb r $gcd(35, 27) = gcd(27, 35 \mod 27) = gcd(27, 8)$ a = q * b + r $= gcd(8, 27 \mod 2) = gcd(8, 3)$ 35 = 1 * 27 + 8 $= gcd(3, 8 \mod 3) = gcd(8, 3)$ 27 = 3 * 8 + 3 $= gcd(2, 3 \mod 2) = gcd(3, 2)$ 8 = 2 * 3 + 2 $= gcd(1, 2 \mod 1) = gcd(1, 0)$ 3 = 1 * 2 + 1

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 2 (Solve the equations for r):

a = q * b + r r = 35 = 1 * 27 + 8 8 = 27 = 3 * 8 + 3 8 = 2 * 3 + 2 3 = 1 * 2 + 12 = 2 * 1 + 0

r = a - q * b8 = 35 - 1 * 27

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 2 (Solve the equations for r):

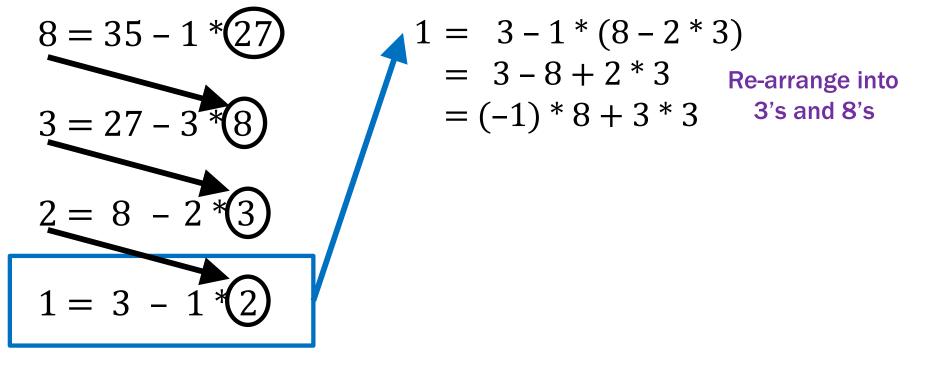
a = q * b + r	r = a – q * b
35 = 1 * 27 + 8	8 = 35 - 1 * 27
27 = 3 * 8 + 3	3 = 27 - 3 * 8
8 = 2 * 3 + 2	2 = 8 - 2 * 3
3 = 1 * 2 + 1	1 = 3 - 1 * 2
2 = 2 * 1 + 0	

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):

Plug in the def of 2



• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):

Plug in the def of 2

8 = 35 - 1 *1 = 3 - 1 * (8 - 2 * 3)= 3 - 8 + 2 * 3**Re-arrange into** = (-1) * 8 + 3 * 33's and 8's 3 = 27 - 3Plug in the def of 3 = (-1) * 8 + 3 * (27 - 3 * 8)= 8 = (-1) * 8 + 3 * 27 + (-9) * 8= 3 * 27 + (-10) * 8 Re-arrange into 1 = 38's and 27's = 3 * 27 + (-10) * (35 - 1 * 27)= 3 * 27 + (-10) * 35 + 10 * 27**Re-arrange into** = 13 * 27 + (-10) * 3527's and 35's

Suppose GCD(a, m) = 1

By Bézout's Theorem, there exist integers *s* and *t* such that sa + tm = 1.

s mod m is the multiplicative inverse of a: $1 = (sa + tm) \mod m = sa \mod m$

Solve: $7x \equiv 1 \pmod{26}$

Solve: $7x \equiv 1 \pmod{26}$

gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

$$26 = 7 * 3 + 5$$
 $5 = 26 - 7 * 3$ $7 = 5 * 1 + 2$ $2 = 7 - 5 * 1$ $5 = 2 * 2 + 1$ $1 = 5 - 2 * 2$

1 = 5 - 2 * (7 - 5 * 1)= (-7) * 2 + 3 * 5 = (-7) * 2 + 3 * (26 - 7 * 3) = (-11) * 7 + 3 * 26 Multiplicative inverse of 7 mod 26 Now (-11) mod 26 = 15. So, x = 15 + 26k for $k \in \mathbb{Z}$. Now solve: $7y \equiv 3 \pmod{26}$

We already computed that 15 is the multiplicative inverse of 7 modulo 26:

That is, $7 \cdot 15 \equiv 1 \pmod{26}$

By the multiplicative property of mod we have

 $7 \cdot 15 \cdot 3 \equiv 3 \pmod{26}$

So any $y \equiv 15 \cdot 3 \pmod{26}$ is a solution.

That is, y = 19 + 26k for any integer k is a solution.

gcd(a, m) = 1 if *m* is prime and 0 < a < m so can always solve these equations mod a prime.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

	-		-	-	-		
х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1