CSE 311: Foundations of Computing

Lecture 11: Modular Arithmetic and Applications
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Last Class: Divisibility

Definition: “a divides b”

Fora € Z,b € Z with a # 0:
a|lbe 3k eZ (b=ka)

\_
Check Your Understanding. Which of the following are true?

51 25| 5 3|2

5] 1iff 1 =5k 25 | 5iff 5 =25k 5|0iff0=5k 3]|2iff2=3k

@ @ 0|5 2|3

1| 5iff5=1k 5| 25iff 25 =5k O0]5iff5=0k 2| 3iff3=2k




Division Theorem

Division Theorem

Fora € Z,d € Zwithd > 0
there exist unigque integers g, rwith 0 <r < d
9 such thata = dqg + r. p

To put it another way, if we divide d into a, we get a
unique quotient | g = a div d
and non-negative remainder |r=a mod d

Note:r=0evenifa<O0.
Not quite the same as a%d.




Division Theorem

Division Theorem

Fora € Z,d € Zwithd > 0
there exist unigque integers g, rwith 0 <r < d
9 such thata = dqg + r. p

To put it another way, if we divide d into a, we get a
unique quotient | g = a div d
and non-negative remainder |r=a mod d

public class Test2 {

----JGRASP exec: java Test2

public static void main(String args[]) { -1
],'nt a = -5; ----JGRASP: operation complete.
int d = 2; .
System.out.println(a % d);

} Note: r= 0 evenifa <0.

Not quite the same as a%d.




Arithmetic, mod 7

(@a+ b) mod 7
(a x b) mod 7

a+,b

ax;b

0

0 (0

0




Modular Arithmetic

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0
a=b(modm) o m|(a —b)

\_

Check Your Understanding. What do each of these mean?
When are they true?

X =0 (mod 2)

-1=19 (mod 5)

y =2 (mod 7)



Modular Arithmetic

~

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0
a=b(modm) o m|(a —b)

\_

Check Your Understanding. What do each of these mean?
When are they true?
X =0 (mod 2)

This statement is the same as saying “x is even”; so, any x that is
even (including negative even numbers) will work.

-1 =19 (mod 5)
This statement is true. 19 - (-1) = 20 which is divisible by 5
y =2 (mod 7)

This statement is true for yin{...,-12,-5, 2, 9, 16, ...}. In other
words, all y of the form 2+7k for k an integer.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a = b (mod m) if and only if amod m = b mod m.

Suppose that a = b (mod m).



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a = b (mod m) if and only if a mod m

b mod m.

Suppose that a = b (mod m).
Then, m | (a - b) by definition of congruence.

So, a - b = km for some integer k by definition of divides.

Therefore, a = b + km.
Taking both sides modulo m we get:
a mod m = (b + km) mod m = b mod m.




Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a = b (mod m) if and only if a mod m

b mod m.

Suppose that a mod m = b mod m.




Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a = b (mod m) if and only if amod m = b mod m.

Suppose that a mod m = b mod m.
By the division theorem, a = mqg + (a mod m) and
b = ms + (b mod m) for some integers g,s.
Then,a -b = (mg + (a mod m)) - (ms + (b mod m))
= m(q-s) + (amodm- b modm)
= m(q-s)sinceamodm = bmodm
Therefore, m |(a — b) andso a = b (mod m).



The mod m function vs the = (mod m) predicate

* What we have just shown

— The mod m function takes any a € Z and maps
it to a remainder a mod m € {0,1,..,m — 1}.

— Imagine grouping together all integers that have
the same value of the mod m function

That is, the same remainder in {0,1,..,m — 1}.

— The = (mod m) predicate compares a,b € Z. It
is true if and only if the mod m function has the
same value on a and on b.

That is, a and b are in the same group.



Modular Arithmetic: Basic Property

Let m be a positive integer.
Ifa = b (modm) and b = ¢ (mod m),
then a = ¢ (mod m)




Modular Arithmetic: Basic Property

Let m be a positive integer.
Ifa = b (modm) and b = ¢ (mod m),
then a = ¢ (mod m)

Suppose that a = b (mod m) and b = ¢ (mod m).
Then, by the previous property, we have
a mod m = b mod m and b mod m = ¢ mod m.

Putting these together, we have a mod m = ¢ mod m,
which says that a = ¢ (mod m), by definition.

“_u

So “=" behaves like “=“ in that sense.
And that is not the only similarity...




Modular Arithmetic: Addition Property

Let m be a positive integer. If a = b (mod m) and
¢c = d(modm),thena+c = b+ d (modm)




Modular Arithmetic: Addition Property

Let m be a positive integer. If a = b (mod m) and
¢c = d(modm),thena+c = b+ d (modm)

Suppose thata = b (mod m) andc = d (mod m). Unrolling
definitions gives us some k such thata - b = km,
and some j such thatc -d = jm.

Adding the equations together gives us
(a+c)- (b+d) = m(k+]J). Now, re-applying the definition
of congruence givesusa +c¢ = b + d (mod m).



Modular Arithmetic: Multiplication Property

Let m be a positive integer. If a = b (mod m) and
¢ =d (mod m), then ac = bd (mod m)




Modular Arithmetic: Multiplication Property

Let m be a positive integer. If a = b (mod m) and
¢ =d (mod m), then ac = bd (mod m)

Suppose that a = b (mod m) and ¢ = d (mod m). Unrolling
definitions gives us some k such thata - b = km,
and some j such thatc -d = jm.

Then,a = km + b and ¢ = jm + d. Multiplying both together
givesus ac = (km+ b)(jm +d) = kjm? + kmd + bjm + bd.

Re-arranging gives us ac - bd = m(kjm + kd + bj).
Using the definition of congruence gives us ac = bd (mod m).



Example

Let n be an integer.
Prove that n? = 0 (mod 4) or n? = 1 (mod 4)

Let’s start by looking a a small example:
02=0 =0 (mod 4)

12=1 =1 (mod 4)
22=4 =0 (mod 4)
32=9 =1 (mod4)

42 =16 =0 (mod 4)




Example

Let n be an integer.
Prove that n? = 0 (mod 4) or n? = 1 (mod 4)

Let’s start by looking a a small example:
02=0 =0 (mod 4)
12=1 =1 (mod 4)
22=4 =0 (mod 4)
32=9 =1 (mod4)
42 =16 =0 (mod 4)

Case 1 (nis even):

It looks like
nh =0 (mod2) — n?=0 (mod 4), and
n=1(mod2) — n?=1(mod 4).



Example

Let n be an integer.
Prove that n? = 0 (mod 4) or n? = 1 (mod 4)

Let’s start by looking a a small example:
02=0 =0 (mod 4)
12=1 =1 (mod 4)

Case 1 (n is even):
Suppose n is even.

Then, n = 2k for some integer k. 22=4 =0 (mod 4)
So, n? = (2k)2 = 4k>. 32=9 =1 (mod 4)
So, by definition of congruence, 42 =16 =0 (mod 4)

we have n? = 0 (mod 4).
It looks like
n =0 (mod 2) — n? =0 (mod 4), and
n=1(mod2) — n?=1(mod 4).



Example

Let n be an integer.
Prove that n? = 0 (mod 4) or n? = 1 (mod 4)

Let’s start by looking a a small example:
02=0 =0 (mod 4)
2 — =
Case 2 (nis odd): ;2;1 ;(1)2223 j;
32=9 =1 (mod4)
42 =16 =0 (mod 4)

Case 1 (nis even): Done.

It looks like
nh =0 (mod2) — n?=0 (mod 4), and
n=1(mod2) — n?=1(mod 4).



Example

Let n be an integer.
Prove that n? = 0 (mod 4) or n? = 1 (mod 4)
Let’s start by looking a a small example:
02=0 =0 (mod 4)
Case 2 (n is odd): 12 =1 =1(mod 4)
Suppose 1 is odd. 22 i 4 - 0 (mod 4)
Then, n = 2k + 1 for some integer k. 22 ~ S196 Z (1) Emoj j;
So, n?2 = (2k + 1)? A0 =EAmo
=4k*+ 4k + 1 It looks like
=4(k*+ k) + 1. n =0 (mod 2) — n2 = 0 (mod 4), and
So, by the earlier property of mod, n =1 (mod 2) — n? =1 (mod 4).
we have n? = 1 (mod 4).

Case 1 (n is even): Done.

Result follows by “proof by cases”: n is either even or not even (odd)



n-bit Unsigned Integer Representation

* Represent integer x as sum of powers of 2:
If Yt b;2 where each b, € {0,1}

then representationis b, ,...b, b, b,

99=64+32+2+1
18=16+2

* Forn=3:
99:. 0110 0011
18: 0001 0010



Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that =21 < x < 271
First bit as the sign, n — 1 bits for the value

99=64+32+2+ 1
18=16 + 2

Forn =8:
99: 0110 0011
-18: 1001 0010

Any problems with this representation?



Two’s Complement Representation

n bit signed integers, first bit will still be the sign bit

Suppose that 0 < x < 2™ ,

x is represented by the binary representation of x
Suppose that 0 < x < 2™ ,

—x is represented by the binary representation of 2" — x

Key property: Twos complement representation of any number y
IS equivalent to y mod 2" so arithmetic works mod 2"

9=64+32+2+1
18 =16+ 2

Forn = 8:
99: 01100011
-18: 1110 1110



Sign-Magnitude vs. Two’s Complement

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1111 1110 1101 1100 1011 1010 1001 O0OOOO 0001 0010 0011 0100 0101 0110 oO111

Sign-bit

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1000 1001 1010 1011 1100 1101 1110 1111 O0OO0OO OOO1 0010 0011 0100 0101 0110 0111

Two’s complement



Two’s Complement Representation

* For 0 < x <271, —x is represented by the
binary representation of 2™ — x

— That is, the two’s complement representation of
any number y has the same value as y modulo 2".

* To compute this: Flip the bits of x then add 1:
— All 1’s string is 2™ — 1, so
Flip the bits of x =replace x by 2" — 1 — x
Then add 1 to get 2™ — x



Basic Applications of mod

 Hashing
* Pseudo random number generation
 Simple cipher



Hashing

Scenario:

Map a small number of data values from a large
domain {0,1,...,M — 1} ...

...into a small set of locations {0,1, ...,n — 1} so
one can quickly check if some value is present

* hash(x) = x mod p for p a prime close to n
—or hash(x) = (ax + b) mod p

 Depends on all of the bits of the data
— helps avoid collisions due to similar values
— need to manage them if they occur



Pseudo-Random Number Generation

Linear Congruential method

Xn+q1 = (ax,, + c) mod m

Choose random x,, a, ¢, m and produce
a long sequence of x,,’s



Simple Ciphers

« Caesarcipher, A=1,B=2,...

— HELLO WORLD
* Shift cipher
— f(p) = (p + k) mod 26
— f1(p) = (p — k) mod 26
* More general
— f(p) = (ap + b) mod 26



