CSE 311: Foundations of Computing

Lecture 11: Modular Arithmetic and Applications

Last Class: Divisibility

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$: $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$

Check Your Understanding. Which of the following are true?

Division Theorem

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}$ with d > 0there exist *unique* integers q, r with $0 \le r < d$ such that a = dq + r.

To put it another way, if we divide d into a, we get a unique quotient $q = a \operatorname{div} d$ and non-negative remainder $r = a \operatorname{mod} d$

> Note: r ≥ 0 even if a < 0. Not quite the same as **a**%**d**.

Division Theorem

```
For a \in \mathbb{Z}, d \in \mathbb{Z} with d > 0
there exist unique integers q, r with 0 \le r < d
such that a = dq + r.
```

```
To put it another way, if we divide d into a, we get a
unique quotient q = a \operatorname{div} d
and non-negative remainder r = a \operatorname{mod} d
```

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
    Note: r ≥ 0 even if a < 0.
    Not quite the same as a%d.</pre>
```

 $a +_7 b = (a + b) \mod 7$ $a \times_7 b = (a \times b) \mod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

 $x \equiv 0 \pmod{2}$

-1 ≡ 19 (mod 5)

 $y \equiv 2 \pmod{7}$

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

 $x \equiv 0 \pmod{2}$

This statement is the same as saying "x is even"; so, any x that is even (including negative even numbers) will work.

-1 ≡ 19 (mod 5)

This statement is true. 19 - (-1) = 20 which is divisible by 5

 $y \equiv 2 \pmod{7}$

This statement is true for y in { ..., -12, -5, 2, 9, 16, ...}. In other words, all y of the form 2+7k for k an integer.

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv b \pmod{m}$.

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv b \pmod{m}$.

Then, $m \mid (a - b)$ by definition of congruence.

So, a - b = km for some integer k by definition of divides.

Therefore, a = b + km.

Taking both sides modulo *m* we get:

 $a \mod m = (b + km) \mod m = b \mod m$.

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$.

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$. By the division theorem, $a = mq + (a \mod m)$ and $b = ms + (b \mod m)$ for some integers q,s. Then, $a - b = (mq + (a \mod m)) - (ms + (b \mod m))$ $= m(q - s) + (a \mod m - b \mod m)$ = m(q - s) since $a \mod m = b \mod m$ Therefore, $m \mid (a - b)$ and so $a \equiv b \pmod{m}$.

- What we have just shown
 - The mod *m* function takes any $a \in \mathbb{Z}$ and maps it to a remainder $a \mod m \in \{0, 1, ..., m 1\}$.
 - Imagine grouping together all integers that have the same value of the mod m function That is, the same remainder in $\{0,1,..,m-1\}$.
 - The $\equiv \pmod{m}$ predicate compares $a, b \in \mathbb{Z}$. It is true if and only if the mod m function has the same value on a and on b.

That is, *a* and *b* are in the same group.

```
Let m be a positive integer.
If a \equiv b \pmod{m} and b \equiv c \pmod{m},
then a \equiv c \pmod{m}
```

```
Let m be a positive integer.
If a \equiv b \pmod{m} and b \equiv c \pmod{m},
then a \equiv c \pmod{m}
```

Suppose that $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$. Then, by the previous property, we have $a \mod m = b \mod m$ and $b \mod m = c \mod m$.

Putting these together, we have $a \mod m = c \mod m$, which says that $a \equiv c \pmod{m}$, by definition.

So " \equiv " behaves like "=" in that sense. And that is not the only similarity...

Modular Arithmetic: Addition Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Adding the equations together gives us (a + c) - (b + d) = m(k + j). Now, re-applying the definition of congruence gives us $a + c \equiv b + d \pmod{m}$.

Modular Arithmetic: Multiplication Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Then, a = km + b and c = jm + d. Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + bjm + bd$.

Re-arranging gives us ac - bd = m(kjm + kd + bj). Using the definition of congruence gives us $ac \equiv bd \pmod{m}$. Let *n* be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Let's start by looking a a small example:

 $0^2 = 0 \equiv 0 \pmod{4}$ $1^2 = 1 \equiv 1 \pmod{4}$ $2^2 = 4 \equiv 0 \pmod{4}$ $3^2 = 9 \equiv 1 \pmod{4}$ $4^2 = 16 \equiv 0 \pmod{4}$ Let *n* be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Case 1 (n is even):

Let's start by looking a a small example:

 $0^{2} = 0 \equiv 0 \pmod{4}$ $1^{2} = 1 \equiv 1 \pmod{4}$ $2^{2} = 4 \equiv 0 \pmod{4}$ $3^{2} = 9 \equiv 1 \pmod{4}$ $4^{2} = 16 \equiv 0 \pmod{4}$

It looks like

n ≡ 0 (mod 2) \rightarrow n² ≡ 0 (mod 4), and n ≡ 1 (mod 2) \rightarrow n² ≡ 1 (mod 4). Case 1 (*n* is even):

Let *n* be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

> Let's start by looking a a small example: $O^2 = O_1 = O_2 (mod 4)$

Suppose *n* is even. Then, n = 2k for some integer *k*. So, $n^2 = (2k)2 = 4k^2$. So, by definition of congruence, we have $n^2 \equiv 0 \pmod{4}$. $0^{2} = 0 \equiv 0 \pmod{4}$ $1^{2} = 1 \equiv 1 \pmod{4}$ $2^{2} = 4 \equiv 0 \pmod{4}$ $3^{2} = 9 \equiv 1 \pmod{4}$ $4^{2} = 16 \equiv 0 \pmod{4}$

It looks like

n ≡ 0 (mod 2) \rightarrow n² ≡ 0 (mod 4), and n ≡ 1 (mod 2) \rightarrow n² ≡ 1 (mod 4). Let *n* be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Case 1 (n is even): Done.

Case 2 (n is odd):

Let's start by looking a a small example:

 $0^2 = 0 \equiv 0 \pmod{4}$ $1^2 = 1 \equiv 1 \pmod{4}$ $2^2 = 4 \equiv 0 \pmod{4}$ $3^2 = 9 \equiv 1 \pmod{4}$ $4^2 = 16 \equiv 0 \pmod{4}$

It looks like

n ≡ 0 (mod 2) \rightarrow n² ≡ 0 (mod 4), and n ≡ 1 (mod 2) \rightarrow n² ≡ 1 (mod 4).

Let *n* be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$ Let's start by looking a a small example: Case 1 (*n* is even): Done. $0^2 = 0 \equiv 0 \pmod{4}$ $1^2 = 1 \equiv 1 \pmod{4}$ Case 2 (*n* is odd): $2^2 = 4 \equiv 0 \pmod{4}$ Suppose *n* is odd. $3^2 = 9 \equiv 1 \pmod{4}$ Then, n = 2k + 1 for some integer k. $4^2 = 16 \equiv 0 \pmod{4}$ So, $n^2 = (2k + 1)^2$ $=4k^{2}+4k+1$ It looks like $=4(k^2+k)+1.$ $n \equiv 0 \pmod{2} \rightarrow n^2 \equiv 0 \pmod{4}$, and $n \equiv 1 \pmod{2} \rightarrow n^2 \equiv 1 \pmod{4}$. So, by the earlier property of mod, we have $n^2 \equiv 1 \pmod{4}$.

Result follows by "proof by cases": n is either even or not even (odd)

n-bit Unsigned Integer Representation

• Represent integer x as sum of powers of 2: If $\sum_{i=0}^{n-1} b_i 2^i$ where each $b_i \in \{0,1\}$

then representation is $b_{n-1}...b_2 b_1 b_0$

```
99 = 64 + 32 + 2 + 1
18 = 16 + 2
```

- For n = 8:
 99: 0110 0011
 - 18: 0001 0010

```
n-bit signed integers
Suppose that -2^{n-1} < x < 2^{n-1}
First bit as the sign, n-1 bits for the value
99 = 64 + 32 + 2 + 1
18 = 16 + 2
For n = 8:
 99: 0110 0011
 -18: 1001 0010
```

Any problems with this representation?

n bit signed integers, first bit will still be the sign bit

Suppose that $0 \le x < 2^{n-1}$

x is represented by the binary representation of x Suppose that $0 \le x \le 2^{n-1}$,

-x is represented by the binary representation of $2^n - x$

Key property: Twos complement representation of any number y is equivalent to $y \mod 2^n$ so arithmetic works $\mod 2^n$

```
99 = 64 + 32 + 2 + 1
18 = 16 + 2
For n = 8:
```

- 99: 0110 0011
- -18: 1110 1110

Sign-Magnitude vs. Two's Complement

-7 -6 -5 -4 -3 -2 -1 Sign-bit

-8 -7 -6 -5 -2 -1 -4 -3

Two's complement

Two's Complement Representation

- For $0 < x \le 2^{n-1}$, -x is represented by the binary representation of $2^n x$
 - That is, the two's complement representation of any number y has the same value as y modulo 2^n .

• To compute this: Flip the bits of x then add 1: - All 1's string is $2^n - 1$, so Flip the bits of $x \equiv$ replace x by $2^n - 1 - x$ Then add 1 to get $2^n - x$

Basic Applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher

Scenario:

Map a small number of data values from a large domain $\{0, 1, ..., M - 1\}$ into a small set of locations $\{0, 1, ..., n - 1\}$ so

one can quickly check if some value is present

- $hash(x) = x \mod p$ for p a prime close to n- or $hash(x) = (ax + b) \mod p$
- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur

Linear Congruential method

$$x_{n+1} = (ax_n + c) \mod m$$

Choose random x_0 , a, c, m and produce a long sequence of x_n 's

- Caesar cipher, A = 1, B = 2, ...- HELLO WORLD
- Shift cipher
 - $-f(p) = (p + k) \mod 26$ $-f^{-1}(p) = (p - k) \mod 26$
- More general

 $- f(p) = (ap + b) \mod 26$