CSE 311: Foundations of Computing

Lecture 11: Modular Arithmetic and Applications

Last Class: Divisibility

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:

$$
a \mid b \leftrightarrow \exists k \in \mathbb{Z}(b=k a)
$$

Check Your Understanding. Which of the following are true?

Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$ there exist unique integers q, r with $0 \leq r<d$ such that $a=d q+r$.

To put it another way, if we divide d into a, we get a unique quotient $q=a \operatorname{div} d$ and non-negative remainder $r=a \bmod d$

Note: $\mathrm{r} \geq 0$ even if $\mathrm{a}<0$. Not quite the same as $a \% d$.

Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$ there exist unique integers q, r with $0 \leq r<d$ such that $a=d q+r$.

To put it another way, if we divide d into a, we get a unique quotient $q=a \operatorname{div} d$ and non-negative remainder $r=a \bmod d$

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
}
```

Note: $r \geq 0$ even if $a<0$. Not quite the same as $a \% d$.

Arithmetic, mod 7

$$
\begin{aligned}
& a+7 b=(a+b) \bmod 7 \\
& a \times_{7} b=(a \times b) \bmod 7
\end{aligned}
$$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with $m>0$

$$
a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
$$

Check Your Understanding. What do each of these mean? When are they true?
$x \equiv 0(\bmod 2)$
$-1 \equiv 19(\bmod 5)$
$y \equiv 2(\bmod 7)$

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with $m>0$

$$
a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
$$

Check Your Understanding. What do each of these mean? When are they true?
$x \equiv 0(\bmod 2)$
This statement is the same as saying " x is even"; so, any x that is even (including negative even numbers) will work.
$-1 \equiv 19(\bmod 5)$
This statement is true. $19-(-1)=20$ which is divisible by 5
$y \equiv 2(\bmod 7)$
This statement is true for y in $\{\ldots,-12,-5,2,9,16, \ldots\}$. In other words, all y of the form $2+7 k$ for k an integer.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ if and only if $a \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \equiv b(\bmod m)$.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ if and only if $a \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \equiv b(\bmod m)$.
Then, $m \mid(a-b)$ by definition of congruence.
So, $a-b=k m$ for some integer k by definition of divides.
Therefore, $a=b+k m$.
Taking both sides modulo m we get:

$$
a \bmod m=(b+k m) \bmod m=b \bmod m
$$

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ if and only if $a \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \bmod m=b \bmod m$.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\boldsymbol{0}$.
Then, $a \equiv b(\bmod \boldsymbol{m})$ if and only if $a \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \bmod m=b \bmod m$.
By the division theorem, $a=m q+(a \bmod m)$ and
$b=m s+(b \bmod m)$ for some integers q, s.
Then, $a-b=(m q+(a \bmod m))-(m s+(b \bmod m))$
$=m(q-s)+(a \bmod m-b \bmod m)$
$=m(q-s)$ since $a \bmod m=b \bmod m$
Therefore, $m \mid(a-b)$ and so $a \equiv b(\bmod m)$.

The $\bmod m$ function vs the $\equiv(\bmod m)$ predicate

- What we have just shown
- The mod m function takes any $a \in \mathbb{Z}$ and maps it to a remainder $a \bmod m \in\{0,1, \ldots, m-1\}$.
- Imagine grouping together all integers that have the same value of the $\bmod m$ function
That is, the same remainder in $\{0,1, . ., m-1\}$.
- The $\equiv(\bmod m)$ predicate compares $a, b \in \mathbb{Z}$. It is true if and only if the mod m function has the same value on a and on b.
That is, a and b are in the same group.

Modular Arithmetic: Basic Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and $\boldsymbol{b} \equiv \boldsymbol{c}(\bmod \boldsymbol{m})$, then $a \equiv c(\bmod m)$

Modular Arithmetic: Basic Property

```
Let \(\boldsymbol{m}\) be a positive integer.
If \(\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})\) and \(\boldsymbol{b} \equiv \boldsymbol{c}(\bmod \boldsymbol{m})\), then \(\boldsymbol{a} \equiv \boldsymbol{c}(\bmod \boldsymbol{m})\)
```

Suppose that $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$.
Then, by the previous property, we have $a \bmod m=b \bmod m$ and $b \bmod m=c \bmod m$.

Putting these together, we have $a \bmod m=c \bmod m$, which says that $a \equiv c(\bmod m)$, by definition.

So "三" behaves like "=" in that sense. And that is not the only similarity...

Modular Arithmetic: Addition Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and
$\boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m})$, then $a+c \equiv b+\boldsymbol{d}(\bmod \boldsymbol{m})$

Modular Arithmetic: Addition Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m})$, then $a+\boldsymbol{c} \equiv \boldsymbol{b}+\boldsymbol{d}(\bmod \boldsymbol{m})$

Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Unrolling definitions gives us some k such that $a-b=k m$, and some j such that $c-d=j m$.

Adding the equations together gives us $(a+c)-(b+d)=m(k+j)$. Now, re-applying the definition of congruence gives us $a+c \equiv b+d(\bmod m)$.

Modular Arithmetic: Multiplication Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m})$, then $a c \equiv b d(\bmod m)$

Modular Arithmetic: Multiplication Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m})$, then $\boldsymbol{a c} \equiv \boldsymbol{b d}(\bmod \boldsymbol{m})$

Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Unrolling definitions gives us some k such that $a-b=k m$, and some j such that $c-d=j m$.

Then, $a=k m+b$ and $c=j m+d$. Multiplying both together gives us $a c=(k m+b)(j m+d)=k j m^{2}+k m d+b j m+b d$.

Re-arranging gives us $a c-b d=m(k j m+k d+b j)$. Using the definition of congruence gives us $a c \equiv b d(\bmod m)$.

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv \mathbf{0}(\bmod 4)$ or $n^{2} \equiv \mathbf{1}(\bmod 4)$
Let's start by looking a a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv \mathbf{0}(\bmod 4)$ or $\boldsymbol{n}^{2} \equiv \mathbf{1}(\bmod 4)$
Case 1 (n is even):
Let's start by looking a a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

It looks like

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and } \\
& n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4) .
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv 0(\bmod 4)$ or $\boldsymbol{n}^{2} \equiv \mathbf{1}(\bmod 4)$
Case 1 (n is even):
Suppose n is even.
Let's start by looking a a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

So, $n^{2}=(2 k) 2=4 k^{2}$.

It looks like

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and } \\
& n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4) .
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv 0(\bmod 4)$ or $\boldsymbol{n}^{2} \equiv \mathbf{1}(\bmod 4)$
Case 1 (n is even): Done.
Let's start by looking a a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

It looks like

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and } \\
& n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4) .
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv 0(\bmod 4)$ or $\boldsymbol{n}^{2} \equiv 1(\bmod 4)$
Case 1 (n is even): Done.
Let's start by looking a a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4)
\end{aligned}
$$

Suppose n is odd.
Then, $n=2 k+1$ for some integer k.

$$
\text { So, } n^{2}=(2 k+1)^{2}
$$

$$
\begin{aligned}
& =4 k^{2}+4 k+1 \\
& =4\left(k^{2}+k\right)+1
\end{aligned}
$$

It looks like

$$
n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and }
$$

So, by the earlier property of mod, $n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4)$. we have $n^{2} \equiv 1(\bmod 4)$.

Result follows by "proof by cases": n is either even or not even (odd)

n-bit Unsigned Integer Representation

- Represent integer x as sum of powers of 2 :

If $\sum_{i=0}^{n-1} b_{i} 2^{i}$ where each $b_{i} \in\{0,1\}$
then representation is $b_{n-1} \ldots b_{2} b_{1} b_{0}$
$99=64+32+2+1$
$18=16+2$

- For $\mathrm{n}=8$:

99: 01100011
18: 00010010

Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that $-2^{n-1}<x<2^{n-1}$
First bit as the sign, $n-1$ bits for the value

$$
\begin{aligned}
& 99=64+32+2+1 \\
& 18=16+2
\end{aligned}
$$

For $\mathrm{n}=8$:
99: 01100011
-18: 10010010

Any problems with this representation?

Two's Complement Representation

n bit signed integers, first bit will still be the sign bit
Suppose that $0 \leq x<2^{n-1}$
x is represented by the binary representation of x
Suppose that $0 \leq x \leq 2^{n-1}$
$-x$ is represented by the binary representation of $2^{n}-x$
Key property: Twos complement representation of any number \boldsymbol{y} is equivalent to $\boldsymbol{y} \boldsymbol{\operatorname { m o d }} \mathbf{2}^{\boldsymbol{n}}$ so arithmetic works $\boldsymbol{\operatorname { m o d }} \mathbf{2}^{\boldsymbol{n}}$

$$
\begin{aligned}
& 99=64+32+2+1 \\
& 18=16+2
\end{aligned}
$$

For $\mathrm{n}=8$:
99: 01100011
-18: 11101110

Sign-Magnitude vs. Two's Complement

-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
1111	1110	1101	1100	1011	1010	1001	0000	0001	0010	0011	0100	0101	0110	0111

Sign-bit

-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
1000	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110	0111

Two's complement

Two's Complement Representation

- For $0<x \leq 2^{n-1},-x$ is represented by the binary representation of $2^{n}-x$
- That is, the two's complement representation of any number y has the same value as y modulo 2^{n}.
- To compute this: Flip the bits of x then add 1:
- All 1 's string is $2^{n}-1$, so

Flip the bits of $x \equiv$ replace x by $2^{n}-1-x$
Then add 1 to get $2^{n}-x$

Basic Applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher

Hashing

Scenario:

Map a small number of data values from a large domain $\{0,1, \ldots, M-1\} \ldots$
...into a small set of locations $\{0,1, \ldots, n-1\}$ so one can quickly check if some value is present

- hash $(x)=x \bmod p$ for p a prime close to n
$-\operatorname{or} \operatorname{hash}(x)=(a x+b) \bmod p$
- Depends on all of the bits of the data
- helps avoid collisions due to similar values
- need to manage them if they occur

Pseudo-Random Number Generation

Linear Congruential method

$$
x_{n+1}=\left(a x_{n}+c\right) \bmod m
$$

Choose random x_{0}, a, c, m and produce a long sequence of x_{n} 's

Simple Ciphers

- Caesar cipher, $A=1, B=2, \ldots$
- HELLO WORLD
- Shift cipher

$$
\begin{aligned}
& -f(p)=(p+k) \bmod 26 \\
& -f^{1}(p)=(p-k) \bmod 26
\end{aligned}
$$

- More general
$-f(p)=(a p+b) \bmod 26$

