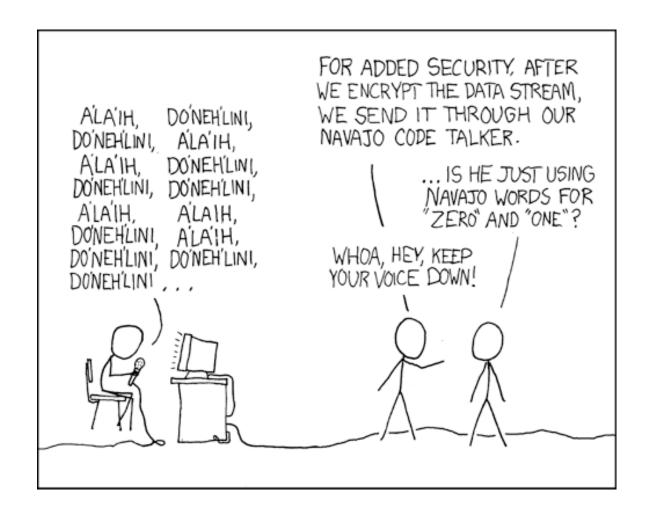
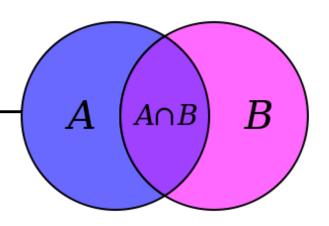
CSE 311: Foundations of Computing

Lecture 10: Set Operations & Representation, Modular Arithmetic



Last Time: Set Theory



Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

```
Some simple examples
A = \{1\}
B = \{1, 3, 2\}
C = \{\Box, 1\}
D = \{\{17\}, 17\}
E = \{1, 2, 7, cat, dog, \emptyset, \alpha\}
```

Last Time: Operations on Sets

Definition for U based on V

$$A \cup B = \{ x : (x \in A) \lor (x \in B) \}$$

Definition for ∩ based on ∧

$$A \cap B = \{ x : (x \in A) \land (x \in B) \}$$

Complement works like ¬

$$\overline{A} = \{ x : \neg (x \in A) \}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by definition of complement, we have $\neg(x \in A \cup B)$. The latter is equivalent to $\neg(x \in A \lor x \in B)$, which is equivalent to $\neg(x \in A) \land \neg(x \in B)$ by De Morgan's law. We then have $x \in A^C$ and $x \in B^C$, by the definition of complement, so we have $x \in A^C \cap B^C$ by the definition of intersection.

To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$ Then, $x \in A^C \cap B^C$. Suppose $x \in A^C \cap B^C$. Then, by definition of intersection, we have $x \in A^C$ and $x \in B^C$. That is, we have $\neg(x \in A) \land \neg(x \in B)$, which is equivalent to $\neg(x \in A \lor x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in (A \cup B)^C$, by the definition of complement. \blacksquare

Prove that
$$(A \cup B)^C = A^C \cap B^C$$

Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

The stated bi-condition holds since:

$$x \in (A \cup B)^{C} \equiv \neg(x \in A \cup B)$$
 def of $\neg(x \in A \cup B)$ def of $\neg(x \in A \cup x \in B)$ def of $\neg(x \in A) \land \neg(x \in B)$ De Morgan
$$\equiv x \in A^{C} \land x \in B^{C}$$
 def of $\neg(x \in A) \land x \in B^{C}$ def of $\neg(x \in A) \land x \in B^{C}$ def of $\neg(x \in A) \land x \in B^{C}$

are often easier to read like this rather than as English text

itrary, we have shown the sets are equal.

It's Boolean Algebra Again!

Meta-Theorem: Translate any Propositional Logic equivalence into "=" relationship between sets by replacing U with V, \cap with Λ , and \cdot^{C} with \neg .

"Proof": Let x be an arbitrary object.

The stated bi-condition holds since:

 $x \in \text{left side} \equiv \text{replace set ops with propositional logic}$

≡ apply Propositional Logic equivalence

≡ replace propositional logic with set ops

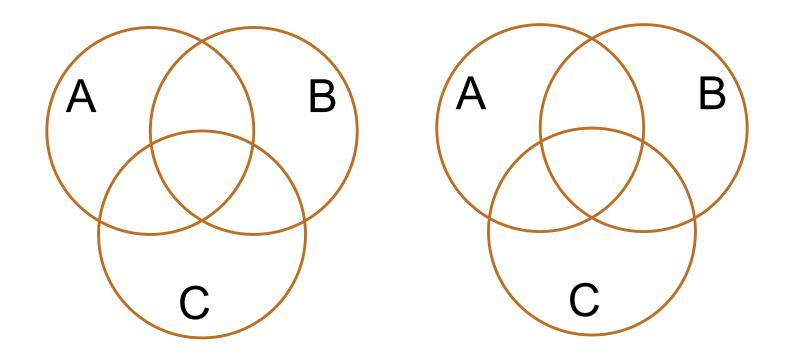
 $\equiv x \in \text{right side}$

Since x was arbitrary, we have shown the sets are equal.

Distributive Laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$



Power Set

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(\mathsf{Days})=?$$

$$\mathcal{P}(\varnothing)=?$$

Power Set

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(Days) = \{ \{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset \} \}$$

$$\mathcal{P}(\emptyset) = \{\emptyset\} \neq \emptyset$$

Cartesian Product

$$A \times B = \{ (a,b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A
$$\times$$
 B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

Cartesian Product

$$A \times B = \{ (a,b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A
$$\times$$
 B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

What is $A \times \emptyset$?

Cartesian Product

$$A \times B = \{ (a,b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A
$$\times$$
 B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

$$A \times \emptyset = \{(a, b) : a \in A \land b \in \emptyset\} = \{(a, b) : a \in A \land F\} = \emptyset$$

Representing Sets Using Bits

- Suppose universe U is $\{1,2,...,n\}$
- Can represent set B ⊆ U as a vector of bits:

```
b_1b_2 \dots b_n where b_i=1 when i \in B
b_i=0 when i \notin B
```

Called the characteristic vector of set B

- Given characteristic vectors for A and B
 - What is characteristic vector for $A \cup B$? $A \cap B$?

Bitwise Operations

01101101

Java: $z=x \mid y$

<u>v 00110111</u>

0111111

00101010

Java: z=x&y

<u>∧ 00001111</u>

00001010

01101101

Java: $z=x^y$

⊕ 00110111

01011010

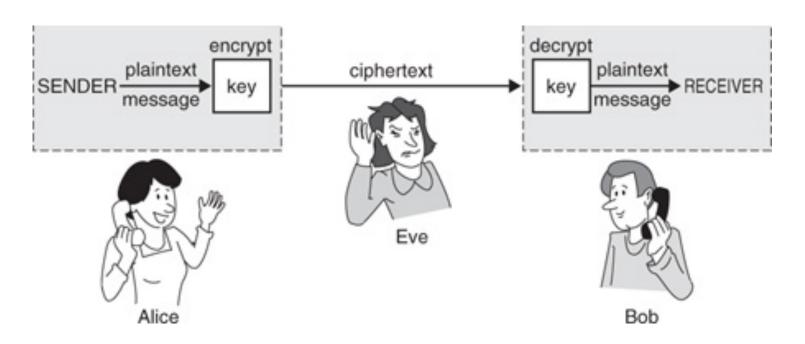
A Useful Identity

• If x and y are bits: $(x \oplus y) \oplus y = ?$

What if x and y are bit-vectors?

Private Key Cryptography

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.



One-Time Pad

- Alice and Bob privately share random n-bit vector K
 - Eve does not know K
- Later, Alice has n-bit message m to send to Bob
 - Alice computes C = m ⊕ K
 - Alice sends C to Bob
 - Bob computes $m = C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

Russell's Paradox

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that $S \in S$...

Russell's Paradox

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that $S \in S$. Then, by definition of $S, S \notin S$, but that's a contradiction.

Suppose for contradiction that $S \notin S$. Then, by definition of the set $S, S \in S$, but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."

Number Theory (and applications to computing)

Branch of Mathematics with direct relevance to computing

- Many significant applications
 - Cryptography
 - Hashing
 - Security

Important tool set

Modular Arithmetic

Arithmetic over a finite domain

In computing, almost all computations are over a finite domain

I'm ALIVE!

I'm ALIVE!

```
public class Test {
   final static int SEC_IN_YEAR = 364*24*60*60*100;
   public static void main(String args[]) {
       System.out.println(
          "I will be alive for at least " +
          SEC IN YEAR * 101 + " seconds."
       );
         ----jGRASP exec: java Test
        I will be alive for at least -186619904 seconds.
          ----jGRASP: operation complete.
```

Divisibility

Definition: "a divides b"

For
$$a \in \mathbb{Z}$$
, $b \in \mathbb{Z}$ with $a \neq 0$:
 $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$

Check Your Understanding. Which of the following are true?

Divisibility

Definition: "a divides b"

For
$$a \in \mathbb{Z}$$
, $b \in \mathbb{Z}$ with $a \neq 0$:
 $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$

Check Your Understanding. Which of the following are true?

Division Theorem

Division Theorem

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}$ with d > 0there exist *unique* integers q, r with $0 \le r < d$ such that a = dq + r.

To put it another way, if we divide d into a, we get a unique quotient $q = a \operatorname{div} d$ and non-negative remainder $r = a \operatorname{mod} d$

Note: $r \ge 0$ even if a < 0. Not quite the same as a % d.

Division Theorem

Division Theorem

```
For a \in \mathbb{Z}, d \in \mathbb{Z} with d > 0
there exist unique integers q, r with 0 \le r < d
such that a = dq + r.
```

To put it another way, if we divide d into a, we get a unique quotient $q = a \operatorname{div} d$ and non-negative remainder $r = a \operatorname{mod} d$

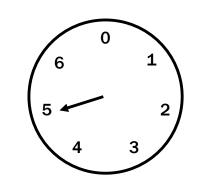
```
public class Test2 {
   public static void main(String args[]) {
     int a = -5;
     int d = 2;
     System.out.println(a % d);
}
----jGRASP exec: java Test2
----jGRASP: operation complete.
```

Note: r ≥ 0 even if a < 0. Not quite the same as **a**%**d**.

Arithmetic, mod 7

$$a +_{7} b = (a + b) \mod 7$$

 $a \times_{7} b = (a \times b) \mod 7$



+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For
$$a, b, m \in \mathbb{Z}$$
 with $m > 0$
 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

$$x \equiv 0 \pmod{2}$$

$$-1 \equiv 19 \pmod{5}$$

$$y \equiv 2 \pmod{7}$$

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For
$$a, b, m \in \mathbb{Z}$$
 with $m > 0$
 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

$$x \equiv 0 \pmod{2}$$

This statement is the same as saying "x is even"; so, any x that is even (including negative even numbers) will work.

$$-1 \equiv 19 \pmod{5}$$

This statement is true. 19 - (-1) = 20 which is divisible by 5

$$y \equiv 2 \pmod{7}$$

This statement is true for y in { ..., -12, -5, 2, 9, 16, ...}. In other words, all y of the form 2+7k for k an integer.

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv b \pmod{m}$.

Suppose that $a \mod m = b \mod m$.

Modular Arithmetic: A Property

```
Let a, b, m be integers with m > 0.
    Then, a \equiv b \pmod{m} if and only if a \mod m = b \mod m.
Suppose that a \equiv b \pmod{m}.
 Then, m \mid (a - b) by definition of congruence.
 So, a - b = km for some integer k by definition of divides.
 Therefore, a = b + km.
 Taking both sides modulo m we get:
          a \mod m = (b + km) \mod m = b \mod m.
Suppose that a \mod m = b \mod m.
  By the division theorem, a = mq + (a \mod m) and
                         b = ms + (b \mod m) for some integers q,s.
  Then, a - b = (mq + (a \mod m)) - (ms + (b \mod m))
               = m(q-s) + (a \mod m - b \mod m)
               = m(q-s) since a \mod m = b \mod m
  Therefore, m \mid (a - b) and so a \equiv b \pmod{m}.
```