CSE 311: Foundations of Computing

Lecture 10: Set Operations & Representation,

Modular Arithmetic

ALAIH,  DONEHLINI,
DONEHLINI,  ALA'IH,
ALATH, DONEHLI,
DONEHLINI DONEHLINI,
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DONEHLINI - ALATH,
DONEHLINI DONEHLINI
DONEHLIN\

FOR ADDED SECURITY, AFTER
WE ENCRYPT THE DATA STREAM,
WE SEND IT THROUGH OUR
NAVATO CODE TALKER.

... 1S HE JUST USING
NAVATO WORDS FOR
'ZER0 AND "ONE™?

WHOA, HEY, KEEP
YOUR \/OICE DOWN!

M_,\_,




Last Time: Set Theory

Sets are collections of objects called elements.

Write a € B to say that a is an element of set B,
and a & B to say that it is not.

Some simple examples
A= {1}

B=1{1, 3, 2}

Cc={Ld, 1}

D={{17}, 17}

E={1, 2, 7, cat, dog, &, a}




Last Time: Operations on Sets

 Definition for U based on V

AUB={x:(x€A)V(x €B)}

 Definition for N based on A

ANB={x:(x€A)A(x €B)}

« Complement works like —

A={x:=(x €A}




Last Time: De Morgan’s Laws

AUB=ANB

ANB=AUB



Last Time: De Morgan’s Laws

Prove that (A U B)¢= A® n B¢
Formally, prove Vx (x € (AU B)¢ & x € A n BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)C. Then, by definition of
complement, we have —=(x € A U B). The latter is
equivalent to =(x € AV x € B), which is equivalent to
—(x € A) A =~(x € B) by De Morgan’s law. We then
have x € A® and x € B¢, by the definition of
complement, so we have x € A® N B¢ by the definition

of intersection. Proof technique:
To show C = D show
x e C—->xeDand
xeD-oxeC



Last Time: De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A n BY)

Proof: Let x be an arbitrary object.
Suppose x € (AU B)¢.... Then, x € A® n BC.

Suppose x € A® N B¢. Then, by definition of
intersection, we have x € A¢ and x € B. That is, we
have —=(x € A) A =(x € B), which is equivalent to
—-(x € AV x € B) by De Morgan’s law. The last is
equivalent to —=(x € A U B), by the definition of union,
so we have shown x € (4 U B)¢, by the definition of
complement. B



Last Time: De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A n B%)

Proof: Let x be an arbitrary object.
The stated bi-condition holds since:

x €E(AUB) =—(x€AUB) def of -€
=—(x€AVx€EBRB) def of U
=—(x€A) A-(x€B) DeMorgan
=x €A Ax € B¢ def of -C

T = xc afn e def of

LEISERBAUELEES itrary, we have shown the sets are equal.

English text




It's Boolean Algebra Again!

Meta-Theorem: Translate any Propositional Logic
equivalence into “=" relationship between sets by
replacing U with V, N with A, and -¢ with —.

“Proof”: Let x be an arbitrary object.
The stated bi-condition holds since:
x € leftside = replace set ops with propositional logic

apply Propositional Logic equivalence

replace propositional logic with set ops

X € right side

Since x was arbitrary, we have shown the sets are equal.
B



Distributive Laws

AN(BUC)=(ANB)U(ANC)
AUBNC)=({AUB)N(A UC)

TN



Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:BCc A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)=?

P(LD)="?



Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:BCc A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)={{M, W, F}, {M, W}, {M, F}, {W, F}, {M}, {W}, {F}, &}

P(D)={D} # &



Cartesian Product

AXB ={(a,b):a€ A,b EB}

R X R is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
7. X 7. is “the set of all pairs of integers”

IfA={1,2},B={a,b,c},then A X B={(1,a),(1,b), (1,0),
(2,a), (2,b), (2,c)}.



Cartesian Product

AXB ={(a,b):a€ A,b EB}

R X R is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
7. X 7. is “the set of all pairs of integers”

IfA={1,2},B={a,b,c},then A X B={(1,a),(1,b), (1,0),
(2,a), (2,b), (2,c)}.

What is AX(Q?



Cartesian Product

AXB ={(a,b):a€ A,b EB}

R X R is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
7. X 7. is “the set of all pairs of integers”

IfA={1,2},B={a,b,c},then A X B={(1,a),(1,b), (1,0),
(2,a), (2,b), (2,c)}.

AxXP={(a,b):a€ANDbDEP}={(a,b):a€A NF} =0



Representing Sets Using Bits

* Suppose universe U is {1,2, ..., n}
 Can represent set B € U as a vector of bits:
bib, ...b, where b; =1wheni€E€B
bi = 0wheni & B
— Called the characteristic vector of set B

 @Given characteristic vectors for A and B
— What is characteristic vector for AU B? AN B?



Bitwise Operations

01101101 Java: z=x|y

v 00110111
01111111

00101010 Java: z=x&y
A 00001111
00001010

01101101 Java: z=x"y
@ 00110111
01011010




A Useful Identity

 [f xandyarebits: (xPy)Dy="?

* What if x and y are bit-vectors?



Private Key Cryptography

* Alice wants to communicate message secretly to
Bob so that eavesdropper Eve who hears their
conversation cannot tell what Alice’s message is.

* Alice and Bob can get together and privately share
a secret key K ahead of time.

{ encrypt i | decrypt i
: plaintext | ciphertext : plaintext !
|SENDER———| key | | » | key ———> RECEIVER!
| message . | message |

| |
| | |
! | |




One-Time Pad

* Alice and Bob privately share random n-bit vector K
— Eve does not know K

* Later, Alice has n-bit message m to send to Bob
— Alice computes C=m @ K
— Alice sends C to Bob

— Bob computes m=C @ K whichis (m @ K) ® K

* Eve cannot figure out m from C unless she can
guess K




Russell’'s Paradox

S={x:x¢&x}

Suppose for contradiction that S € S...



Russell’'s Paradox

S={x:x¢&x}

Suppose for contradiction that S € S. Then, by definition of
S,S &S, but that’s a contradiction.

Suppose for contradiction that S € S. Then, by definition of
theset S, S € 5, but that’s a contradiction, too.

This is reminiscent of the truth value of the statement “This
statement is false.”



Number Theory (and applications to computing)

 Branch of Mathematics with direct relevance to
computing

* Many significant applications
— Cryptography
— Hashing
— Security

* Important tool set



Modular Arithmetic

 Arithmetic over a finite domain

* |n computing, almost all computations are over a
finite domain



I’m ALIVE!

public class Test {
final static int SEC_IN YEAR = 364*24*60*60*100;
public static void main(String args[]) {
System.out.println(
“I will be alive for at least ” +
SEC_IN YEAR * 101 + “ seconds.”

)5



I’m ALIVE!

public class Test {
final static int SEC_IN YEAR = 364*24*60*60*100;
public static void main(String args[]) {
System.out.println(
“I will be alive for at least ” +
SEC_IN YEAR * 101 + “ seconds.”

)5

----JGRASP exec: java Test
I will be alive for at least -186619904 seconds.

----JGRASP: operation complete.



Divisibility

Definition: “a divides b”

Fora € Z,b € Z with a # 0:
a|lbe 3k eZ (b=ka)

\_
Check Your Understanding. Which of the following are true?

5|1 25 | 5 5|0 3|2

1|5 5|25 0|5 2|3



Divisibility

Definition: “a divides b”

Fora € Z,b € Z with a # 0:
a|lbe 3k eZ (b=ka)

\_
Check Your Understanding. Which of the following are true?

51 25| 5 3|2

5] 1iff 1 =5k 25 | 5iff 5 =25k 5|0iff0=5k 3]|2iff2=3k

@ @ 0|5 2|3

1| 5iff5=1k 5| 25iff 25 =5k O0]5iff5=0k 2| 3iff3=2k




Division Theorem

Division Theorem

Fora € Z,d € Zwithd > 0
there exist unigque integers g, rwith 0 <r < d
9 such thata = dqg + r. p

To put it another way, if we divide d into a, we get a
unique quotient | g = a div d
and non-negative remainder |r=a mod d

Note:r=0evenifa<O0.
Not quite the same as a%d.




Division Theorem

Division Theorem

Fora € Z,d € Zwithd > 0
there exist unigque integers g, rwith 0 <r < d
9 such thata = dqg + r. p

To put it another way, if we divide d into a, we get a
unique quotient | g = a div d
and non-negative remainder |r=a mod d

public class Test2 {

----JGRASP exec: java Test2

public static void main(String args[]) { -1
],'nt a = -5; ----JGRASP: operation complete.
int d = 2; .
System.out.println(a % d);

} Note: r= 0 evenifa <0.

Not quite the same as a%d.




Arithmetic, mod 7

(@a+ b) mod 7
(a x b) mod 7

a+,b

ax;b

0

0 (0

0




Modular Arithmetic

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0
a=b(modm) o m|(a —b)

\_

Check Your Understanding. What do each of these mean?
When are they true?

X =0 (mod 2)

-1=19 (mod 5)

y =2 (mod 7)



Modular Arithmetic

~

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0
a=b(modm) o m|(a —b)

\_

Check Your Understanding. What do each of these mean?
When are they true?
X =0 (mod 2)

This statement is the same as saying “x is even”; so, any x that is
even (including negative even numbers) will work.

-1 =19 (mod 5)
This statement is true. 19 - (-1) = 20 which is divisible by 5
y =2 (mod 7)

This statement is true for yin{...,-12,-5, 2, 9, 16, ...}. In other
words, all y of the form 2+7k for k an integer.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

Suppose that a = b (mod m).

Suppose that a mod m = b mod m.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

Suppose that a = b (mod m).
Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.
Taking both sides modulo m we get:
a mod m = (b + km) mod m = b mod m.

Suppose that a mod m = b mod m.
By the division theorem, a = mqg + (a mod m) and
b = ms + (b mod m) for some integers g,s.
Then,a -b = (mg + (a mod m)) - (ms + (b mod m))
= m(q-s) + (a modm- b modm)
= m(q-s)sinceamodm = bmodm
Therefore, m |(a — b) andso a = b (mod m).



