CSE 311: Foundations of Computing

Lecture 9: Set Theory

THIS IS GOING TO BE ONE OF THOSE WEIRD, DARK-MAGIC PROOFS, ISN'T IT? I CAN TELL.

NOW, LET'S ASSUME THE CORRECT ANSWER WILL EVENTUALLY BE WRITTEN ON THIS BOARD AT THE COORDINATES (x, y). IF WE-

Last Time: Proof Strategies: Counterexamples

To prove $\neg \forall x P(x)$, prove $\exists \neg P(x)$:

- Works by de Morgan's Law: $\neg \forall x \boldsymbol{P}(x) \equiv \exists x \neg P(x)$
- All we need to do that is find an x where $P(x)$ is false
- This example is called a counterexample to $\forall \boldsymbol{x} \boldsymbol{P}(\boldsymbol{x})$.

e.g. Prove "Not every prime number is odd"

Proof: 2 is prime but not odd, a counterexample to the claim that every prime number is odd.

Last Time: Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

$$
\text { 1.1. } \neg q \quad \text { Assumption }
$$

1.3. $\neg p$

1. $\neg q \rightarrow \neg p$
2. $p \rightarrow q$

Direct Proof Rule
Contrapositive: 1

Last Time: Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

We will prove the contrapositive.
Suppose $\neg q$.

Thus, $\neg p$.

1. $\neg q \rightarrow \neg p \quad$ Direct Proof Rule
2. $\boldsymbol{p} \rightarrow \boldsymbol{q} \quad$ Contrapositive: 1

Last Time: Proof by Contradiction: One way to prove $\neg \mathrm{p}$

If we assume p and derive F (a contradiction), then we have proven $\neg \mathrm{p}$.

1.1. p Assumption
1.3. F

1. $p \rightarrow F \quad$ Direct Proof rule
2. $\neg p \vee \mathrm{~F}$
3. $\neg p$

Law of Implication: 1
Identity: 2

Last Time: Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we have proven \neg p.

We will argue by contradiction.
Suppose p.

This shows F, a contradiction.

	1.1. p	Assumption
	\ldots	
	1.3. F	
1. $p \rightarrow \mathrm{~F}$	Direct Proof rule	
2. $\neg p \vee \mathrm{~F}$	Law of Implication: 1	
3. $\neg p$	Identity: 2	

Even and Odd \begin{tabular}{|l|}
\hline Predicate Definitions

\hline | Even $(x) \equiv \exists y(x=2 y)$ |
| :--- |
| $\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$ |

\hline
\end{tabular}

Prove: "No integer is both even and odd."
Formally, prove $\neg \exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$

Even and Odd

Predicate Definitions
$\operatorname{Even}(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove: "No integer is both even and odd."
Formally, prove $\neg \exists x(\operatorname{Even}(x) \wedge O d d(x))$
Proof: We work by contradiction. Suppose that x is an integer that is both even and odd.
Then, $x=2 a$ for some integer a and $x=2 b+1$ for some integer b. This means $2 a=2 b+1$ and hence $a=b+1 / 2$.
But two integers cannot differ by $1 / 2$, so this is a contradiction. ■

Strategies

- Simple proof strategies already do a lot
- counter examples
- proof by contrapositive
- proof by contradiction
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Applications of Predicate Logic

- Remainder of the course will use predicate logic to prove important properties of interesting objects
- start with math objects that are widely used in CS
- eventually more CS-specific objects
- Encode domain knowledge in predicate definitions
- Then apply predicate logic to infer useful results

Domain of Discourse
Integers

$$
\begin{array}{|l}
\hline \text { Predicate Definitions } \\
\hline \operatorname{Even}(x) \equiv \exists y(x=2 \cdot y) \\
\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1)
\end{array}
$$

Set Theory

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

$$
\begin{aligned}
& \text { Some simple examples } \\
& A=\{1\} \\
& B=\{1,3,2\} \\
& C=\{\square, 1\} \\
& D=\{\{17\}, 17\} \\
& E=\{1,2,7, \text { cat, dog, } \varnothing, \alpha\}
\end{aligned}
$$

Some Common Sets

\mathbb{N} is the set of Natural Numbers; $\mathbb{N}=\{0,1,2, \ldots\}$ \mathbb{Z} is the set of Integers; $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
\mathbb{Q} is the set of Rational Numbers; e.g. $1 / 2,-17,32 / 48$
\mathbb{R} is the set of Real Numbers; e.g. 1, $-17,32 / 48, \pi, \sqrt{2}$ [\mathbf{n}] is the set $\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$ when \mathbf{n} is a natural number
$\}=\varnothing$ is the empty set; the only set with no elements

Sets can be elements of other sets

> For example $\begin{aligned} & A=\{\{1\},\{2\},\{1,2\}, \varnothing\} \\ & B=\{1,2\}\end{aligned}$

Then $B \in A$.

Definitions

- A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

- A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

- Note: $(A=B) \equiv(A \subseteq B) \wedge(B \subseteq A)$

Definition: Equality

A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\} \\
& D=\{4,3,3\} \\
& E=\{3,4,3\} \\
& F=\{4,\{3\}\}
\end{aligned}
$$

Which sets are equal to each other?

Definition: Subset

A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\}
\end{aligned}
$$

$\varnothing \subseteq A ?$	QUESTIONS
$A \subseteq B ?$	
$C \subseteq B ?$	

Building Sets from Predicates

$S=$ the set of all* x for which $P(x)$ is true

$$
S=\{x: P(x)\}
$$

$S=$ the set of all x in A for which $P(x)$ is true

$$
S=\{x \in A: P(x)\}
$$

*in the domain of P , usually called the "universe" U

Set Operations

$$
A \cup B=\{x:(x \in A) \vee(x \in B)\} \text { Union }
$$

$$
A \cap B=\{x:(x \in A) \wedge(x \in B)\} \text { Intersection }
$$

$$
A \backslash B=\{x:(x \in A) \wedge(x \notin B)\} \text { Set Difference }
$$

$$
\begin{aligned}
A & =\{1,2,3\} \\
B & =\{3,5,6\} \\
C & =\{3,4\}
\end{aligned}
$$

QUESTIONS Using A, B, C and set operations, make... $[6]=$ $\{3\}=$ $\{1,2\}=$

More Set Operations

$$
A \oplus B=\{x:(x \in A) \oplus(x \in B)\} \quad \begin{aligned}
& \text { Symmetric } \\
& \text { Difference }
\end{aligned}
$$

(with respect to universe \mathbf{U})
Complement

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{1,2,4,6\} \\
& \text { Universe: } \\
& U=\{1,2,3,4,5,6\}
\end{aligned}
$$

$$
\begin{aligned}
& A \oplus B=\{3,4,6\} \\
& \bar{A}=\{4,5,6\}
\end{aligned}
$$

It's Boolean algebra again

- Definition for \cup based on \vee
- Definition for \cap based on \wedge
- Complement works like \neg

De Morgan's Laws

$\overline{A \cup B}=\bar{A} \cap \bar{B}$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by definition of complement, we have $\neg(x \in A \cup B)$. The latter is equivalent to $\neg(x \in A \vee x \in B)$, which is equivalent to $\neg(x \in A) \wedge \neg(x \in B)$ by De Morgan's law. We then have $x \in A^{C}$ and $x \in B^{C}$, by the definition of complement, so we have $x \in A^{C} \cap B^{C}$ by the definition of intersection.

$$
\begin{aligned}
& \text { Proof technique: } \\
& \text { To show } \mathrm{C}=\mathrm{D} \text { show } \\
& x \in \mathrm{C} \rightarrow x \in \mathrm{D} \text { and } \\
& x \in \mathrm{D} \rightarrow x \in \mathrm{C}
\end{aligned}
$$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C} \ldots$ Then, $x \in A^{C} \cap B^{C}$.
Suppose $x \in A^{C} \cap B^{C}$. Then, by definition of intersection, we have $x \in A^{C}$ and $x \in B^{C}$. That is, we have $\neg(x \in A) \wedge \neg(x \in B)$, which is equivalent to $\neg(x \in A \vee x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in(A \cup B)^{C}$, by the definition of complement. ■

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
The stated bi-condition holds since:

$$
\left.\begin{array}{rlrl}
x \in(A \cup B)^{C} & \equiv \neg(x \in A \cup B) & & \text { def of }-C \\
& \equiv \neg(x \in A \vee x \in B) & & \text { def of } \cup \\
& \equiv \neg(x \in A) \wedge \neg(x \in B) & & \text { De Morgan } \\
& \equiv x \in A^{C} \wedge x \in B^{C} & & \text { def of }-C \\
c_{\text {Chains of equivivelences }}^{\text {are often easier to read }}
\end{array}\right) \equiv x \in A^{C} \cap B^{C} \quad ~ \begin{array}{ll}
\text { def of } \cap
\end{array}
$$

Distributive Laws

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days $=\{M, W, F\}$ and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=$?
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days $=\{M, W, F\}$ and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=\{\{\mathrm{M}, \mathrm{W}, \mathrm{F}\},\{\mathrm{M}, \mathrm{W}\},\{\mathrm{M}, \mathrm{F}\},\{\mathrm{W}, \mathrm{F}\},\{\mathrm{M}\},\{\mathrm{W}\},\{\mathrm{F}\}, \varnothing\}$
$\mathcal{P}(\varnothing)=\{\varnothing\} \neq \varnothing$

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$, (2,a), (2,b), (2,c)\}.

Cartesian Product

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

$$
\text { If } \begin{aligned}
A=\{1,2\}, B=\{a, b, c\}, \text { then } A \times B=\{ & \{(1, a),(1, b),(1, c), \\
& (2, a),(2, b),(2, c)\} .
\end{aligned}
$$

What is $A \times \emptyset ?$

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$, $(2, a),(2, b),(2, c)\}$.
$\boldsymbol{A} \times \emptyset=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \boldsymbol{b} \in \emptyset\}=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \mathrm{F}\}=\varnothing$

Representing Sets Using Bits

- Suppose universe U is $\{1,2, \ldots, n\}$
- Can represent set $B \subseteq U$ as a vector of bits:

$$
\begin{array}{ll}
b_{1} b_{2} \ldots b_{n} \text { where } & b_{i}=1 \text { when } i \in B \\
& b_{i}=0 \text { when } i \notin B
\end{array}
$$

- Called the characteristic vector of set B
- Given characteristic vectors for A and B
- What is characteristic vector for $A \cup B$? $A \cap B$?

Bitwise Operations

$01101101 \quad J a v a: \quad z=x \mid y$
 v 00110111
 01111111
 00101010 Java: $\quad \mathbf{= x} \& y$
 - 00001111 00001010
 01101101
 Java:
 $z=x^{\wedge} y$
 $\oplus 00110111$
 01011010

A Useful Identity

- If x and y are bits: $(x \oplus y) \oplus y=$?
- What if x and y are bit-vectors?

Private Key Cryptography

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.

One-Time Pad

- Alice and Bob privately share random n -bit vector K
- Eve does not know K
- Later, Alice has n-bit message m to send to Bob
- Alice computes $\mathbf{C}=\mathbf{m} \oplus \mathrm{K}$
- Alice sends C to Bob
- Bob computes $m=C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

Russell's Paradox

$$
S=\{x: x \notin x\}
$$

Suppose for contradiction that $S \in S$...

Russell's Paradox

$$
S=\{x: x \notin x\}
$$

Suppose for contradiction that $S \in S$. Then, by definition of $S, S \notin S$, but that's a contradiction.

Suppose for contradiction that $S \notin S$. Then, by definition of the set $S, S \in S$, but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."

