CSE 311: Foundations of Computing

Lecture 9: Set Theory

To prove $\neg \forall x P(x)$, prove $\exists \neg P(x)$:

- Works by de Morgan's Law: $\neg \forall x P(x) \equiv \exists x \neg P(x)$
- All we need to do that is find an x where P(x) is false
- This example is called a *counterexample* to $\forall x P(x)$.

e.g. Prove "Not every prime number is odd"

Proof: 2 is prime but not odd, a counterexample to the claim that every prime number is odd.

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

We will prove the contrapositive.

Suppose $\neg q$.	1.1. ¬ <i>q</i>	Assumption
Thus, ¬p.	1.3. ¬ <i>p</i>	
	1. $\neg q \rightarrow \neg p$	Direct Proof Rule
	2. $p \rightarrow q$	Contrapositive: 1

If we assume p and derive F (a contradiction), then we have proven $\neg p$.

If we assume p and derive F (a contradiction), then we have proven $\neg p$.

We will argue by contradiction.

Suppose p.1.1. pAssumption.........This shows F, a contradiction.1.3. F1. $p \rightarrow F$ Direct Proof rule2. $\neg p \lor F$ Law of Implication: 13. $\neg p$ Identity: 2

Predicate Definitions Even(x) $\equiv \exists y \ (x = 2y)$ Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Prove: "No integer is both even and odd." Formally, prove $\neg \exists x (Even(x) \land Odd(x))$

Predicate Definitions Even(x) $\equiv \exists y \ (x = 2y)$ Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Prove: "No integer is both even and odd." Formally, prove $\neg \exists x (Even(x) \land Odd(x))$

Proof: We work by contradiction. Suppose that x is an integer that is both even and odd.

Then, x=2a for some integer a and x=2b+1 for some integer b. This means 2a=2b+1 and hence a=b+1/2.

But two integers cannot differ by ½, so this is a contradiction. ■

- Simple proof strategies already do a lot
 - counter examples
 - proof by contrapositive
 - proof by contradiction
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Applications of Predicate Logic

- Remainder of the course will use predicate logic to prove <u>important</u> properties of <u>interesting</u> objects
 - start with math objects that are widely used in CS
 - eventually more CS-specific objects
- Encode domain knowledge in predicate definitions
- Then apply predicate logic to infer useful results

Predicate Definitions Even(x) $\equiv \exists y (x = 2 \cdot y)$ Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

> Some simple examples $A = \{1\}$ $B = \{1, 3, 2\}$ $C = \{\Box, 1\}$ $D = \{\{17\}, 17\}$ $E = \{1, 2, 7, cat, dog, \emptyset, \alpha\}$

N is the set of Natural Numbers; $\mathbb{N} = \{0, 1, 2, ...\}$ \mathbb{Z} is the set of Integers; $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ \mathbb{Q} is the set of Rational Numbers; e.g. $\frac{1}{2}$, -17, 32/48 \mathbb{R} is the set of Real Numbers; e.g. 1, -17, 32/48, π , $\sqrt{2}$ [n] is the set {1, 2, ..., n} when n is a natural number {} = \emptyset is the empty set; the *only* set with no elements For example A = $\{\{1\},\{2\},\{1,2\},\emptyset\}$ B = $\{1,2\}$

Then $B \in A$.

• A and B are equal if they have the same elements

$$A = B \equiv \forall x (x \in A \leftrightarrow x \in B)$$

• A is a subset of B if every element of A is also in B

$$A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$$

• Note:
$$(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$$

A and B are equal if they have the same elements

$$A = B \equiv \forall x (x \in A \leftrightarrow x \in B)$$

$$A = \{1, 2, 3\}$$

$$B = \{3, 4, 5\}$$

$$C = \{3, 4\}$$

$$D = \{4, 3, 3\}$$

$$E = \{3, 4, 3\}$$

$$F = \{4, \{3\}\}$$

Which sets are equal to each other?

A is a subset of B if every element of A is also in B

$$A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$$

S =the set of all* x for which P(x) is true

 $S = \{x : P(x)\}$

S = the set of all x in A for which P(x) is true

$$\mathsf{S} = \{\mathsf{x} \in \mathsf{A} : \mathsf{P}(\mathsf{x})\}$$

*in the domain of P, usually called the "universe" U

$$A \cup B = \{ x : (x \in A) \lor (x \in B) \}$$
 Union

$$A \cap B = \{ x : (x \in A) \land (x \in B) \}$$
 Intersection

$$A \setminus B = \{ x : (x \in A) \land (x \notin B) \}$$
 Set Difference

A = {1, 2, 3} B = {3, 5, 6} C = {3, 4}	<u>QUESTIONS</u> Using A, B, C and set operations, make [6] =
	{3} = {1,2} =

$$A \oplus B = \{ x : (x \in A) \oplus (x \in B) \}$$

Symmetric Difference

$$\overline{A} = \{ x : x \notin A \}$$
(with respect to universe U)

Complement

A =
$$\{1, 2, 3\}$$

B = $\{1, 2, 4, 6\}$
Universe:
U = $\{1, 2, 3, 4, 5, 6\}$

$$A \bigoplus B = \{3, 4, 6\}$$

 $\overline{A} = \{4, 5, 6\}$

It's Boolean algebra again

• Definition for \cup based on \vee

- Definition for \cap based on \wedge

- Complement works like \neg

$\overline{A \cup B} = \overline{A} \cap \overline{B}$

$\overline{A \cap B} = \overline{A} \cup \overline{B}$

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by definition of complement, we have $\neg (x \in A \cup B)$. The latter is equivalent to $\neg (x \in A \lor x \in B)$, which is equivalent to $\neg (x \in A) \land \neg (x \in B)$ by De Morgan's law. We then have $x \in A^C$ and $x \in B^C$, by the definition of complement, so we have $x \in A^C \cap B^C$ by the definition of intersection.

Proof technique: To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$ Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$ Then, $x \in A^C \cap B^C$. Suppose $x \in A^C \cap B^C$. Then, by definition of intersection, we have $x \in A^C$ and $x \in B^C$. That is, we have $\neg(x \in A) \land \neg(x \in B)$, which is equivalent to $\neg(x \in A \lor x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in (A \cup B)^C$, by the definition of complement.

English text

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

The stated bi-condition holds since:

$$x \in (A \cup B)^{C} \equiv \neg (x \in A \cup B) \qquad \text{def of } -^{C}$$
$$\equiv \neg (x \in A \lor x \in B) \qquad \text{def of } \cup$$
$$\equiv \neg (x \in A) \land \neg (x \in B) \qquad \text{De Morgan}$$
$$\equiv x \in A^{C} \land x \in B^{C} \qquad \text{def of } -^{C}$$
$$\equiv x \in A^{C} \cap B^{C} \qquad \text{def of } \cap$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(\mathsf{Days})=?$

$$\mathcal{P}(\emptyset)$$
=?

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(Days) = \{\{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset\}\}$

 $\mathcal{P}(\emptyset) = \{\emptyset\} \neq \emptyset$

$$A \times B = \{ (a, b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

$$A \times B = \{ (a, b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

What is $A \times \emptyset$?

$$A \times B = \{ (a, b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

 $A \times \emptyset = \{(a, b) : a \in A \land b \in \emptyset\} = \{(a, b) : a \in A \land F\} = \emptyset$

- Suppose universe U is $\{1, 2, ..., n\}$
- Can represent set $B \subseteq U$ as a vector of bits: $b_1 b_2 \dots b_n$ where $b_i = 1$ when $i \in B$ $b_i = 0$ when $i \notin B$
 - Called the *characteristic vector* of set B
- Given characteristic vectors for A and B
 What is characteristic vector for A ∪ B? A ∩ B?

01101101 Java: z=x|y∨ 00110111 01111111 00101010 Java: z=x&y 00001111 00001010 01101101 Java: $z=x^y$ \oplus 00110111 01011010

• If x and y are bits: $(x \oplus y) \oplus y = ?$

• What if x and y are bit-vectors?

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.

- Alice and Bob privately share random n-bit vector K
 - Eve does not know K
- Later, Alice has n-bit message m to send to Bob
 - Alice computes $C = m \oplus K$
 - Alice sends C to Bob
 - Bob computes $m = C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that $S \in S$...

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that $S \in S$. Then, by definition of $S, S \notin S$, but that's a contradiction.

Suppose for contradiction that $S \notin S$. Then, by definition of the set $S, S \in S$, but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."