CSE 311: Foundations of Computing

Lecture 9: Set Theory

... LETs ASSUME THERE EXISTS | THIS ISGOING TOBE | WHAT? NO, NO, ITS A | | NOW, LET’S ASSUINE THE CORRECT
SOME FUNCTION Flab,c.) WHICH | ONE OF THOSE. WEIRD | PERFECTLY SENSIBLE | | ANSWER WILL EVENTUALLY BE
PRODUCES THE CORRELT ANSUER- | DARK-MAGIC PROOFS, | CHAIN OF REASONING. | | WRITTEN ON THIS BOARD AT THE
HANG ON [GNT IT? T AN TELL. J COORDINATES (%, Y. IF WJE—

\ K ALL RIGHT... )

\- I AVEW IT!

A




Last Time: Proof Strategies: Counterexamples

To prove —Vx P(x), prove I—P(x):
* Works by de Morgan’s Law: =Vx P(x) = 3x—-P(x)
 All we need to do that is find an x where P(x) is false
* This example is called a counterexample to Vx P(x).

e.g. Prove “Not every prime number is odd”

Proof: 2 is prime but not odd, a counterexample
to the claim that every prime number is odd. B



Last Time: Proof Strategies: Proof by Contrapositive

If we assume —q and derive —p, then we have proven
g — —p, which is equivalent to proving p — q.

1.1. —q Assumption

1. —.q—>—p Direct Proof Rule
2. p—q Contrapositive: 1



Last Time: Proof Strategies: Proof by Contrapositive

If we assume —q and derive —p, then we have proven
g — —p, which is equivalent to proving p — q.

We will prove the contrapositive.
Suppose —(. 1.1. —q Assumption
Thus, —p. 1.3. —p

1. —q—>—p Direct Proof Rule
2. p—q Contrapositive: 1



Last Time: Proof by Contradiction: One way to prove —p

If we assume p and derive F (a contradiction), then
we have proven —p.

1.1. p  Assumption

1.3. F

1. p—F Direct Proof rule
2. —pvF Law of Implication: 1

3. —p Identity: 2



Last Time: Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we
have proven —p.

We will argue by contradiction.

Suppose p. 1.1. p Assumption
This shows F, a contradiction. 1.3. F _
1. p—F Direct Proof rule
2. —pVvF Law of Implication: 1

Identity: 2
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Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd 0dd(x) =3y (x = 2y + 1)

Domain of Discourse

Integers

Prove: “No integer is both even and odd.”
Formally, prove — 3x (Even(x)AOdd(x))




Predicate Definitions

Domain of Discourse

Even and Odd  |Even(x)=3y (x = 2y)

Odd(X) = Hy (x — Zy + 1) IntEgerS

Prove: “No integer is both even and odd.”
Formally, prove — 3x (Even(x)AOdd(x))

Proof: We work by contradiction. Suppose that x is an
integer that is both even and odd.

Then, x=2a for some integer a and x=2b+1 for some
integer b. This means 2a=2b+1 and hence a=b+.

But two integers cannot differ by %, so this is a
contradiction. B



Strategies

* Simple proof strategies already do a lot
— counter examples
— proof by contrapositive
— proof by contradiction

* Later we will cover a specific strategy that applies
to loops and recursion (mathematical induction)



Applications of Predicate Logic

* Remainder of the course will use predicate logic to
prove important properties of interesting objects
— start with math objects that are widely used in CS
— eventually more CS-specific objects

 Encode domain knowledge in predicate definitions
 Then apply predicate logic to infer useful results

Domain of Discourse Predicate Definitions
JiEEE Even(x) = Ely (X = 2y)
pdd(x) =dy(x=2-y+ 1))




Set Theory

Sets are collections of objects called elements.

Write a € B to say that a is an element of set B,
and a & B to say that it is not.

Some simple examples
A= {1}

B=1{1, 3, 2}

Cc={Ld, 1}

D={{17}, 17}

E={1, 2, 7, cat, dog, &, a}




Some Common Sets

N is the set of Natural Numbers; N ={0, 1, 2, ...}

Z is the set of Integers; 2 =1{...,,-2,-1,0, 1, 2, ...}

Q is the set of Rational Numbers; e.g. %, -17, 32/48

R is the set of Real Numbers; e.g. 1, -17, 32/48, ,\/2
[n] is the set {1, 2, ..., n} when n is a natural number
{} = D is the empty set; the only set with no elements




Sets can be elements of other sets

For example
A = {{1},{2},{1,2},$5}
B={1,2}

Then B € A.




Definitions

A and B are equal if they have the same elements

A=B =V x(x e A< x € B)

 Ais asubset of B if every element of A is also in B

AcB=Vx(xe A— x e B)

* Note: (A=B) =(A<B) A(BS A



Definition: Equality

A and B are equal if they have the same elements

A=B =V x(x e A< x € B)

A={1, 2, 3}
B={3, 4,5}
C={3, 4}
D=1{4,3,3} Which sets are equal to each other?
E={3, 4,3}
F={4,{3}}




Definition: Subset

A is a subset of B if every element of A is also in B

AcB=Vx(xe A— x e B)

A={1, 2,3}
B={3, 4,5}
C=1{3, 4}
QUESTIONS
< A?
Ac B?

CcB?




Building Sets from Predicates

S = the set of all* x for which P(x) is true

S ={x:P(x)}

S = the set of all x in A for which P(x) is true

S={x e A:P(x)}

*in the domain of P, usually called the “universe” U



Set Operations

AUB={x:(x€A)V (x € B)} Union

ANB={x:(x €A)A(x €B)} Intersection

A\B={x:(x€A)A(x & B)}  SetDifference

A={1, 2, 3} QUESTIONS
B={3,5, 6} Using A, B, C and set operations, make...
C=1{3, 4} [6] =

3}=
{1,2} =




More Set Operations

A@B={x:(x€A D (x €B)} Symmetric
Difference

A={x:x¢&A}
(with respect to universe U) Complement

A=1{1,2,3)

B = {11 2; 4) 6} _
Universe: ADB={3 4,6

U=1{1,2,3,4,5,6) i




It's Boolean algebra again

 Definition for U based on v

 Definition for N based on A

« Complement works like —



De Morgan’s Laws

AUB=ANB

ANB=AUB



De Morgan’s Laws

Prove that (A U B)¢= A® n B¢
Formally, prove Vx (x € (AU B)¢ & x € A n BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)C. Then, by definition of
complement, we have —=(x € A U B). The latter is
equivalent to =(x € AV x € B), which is equivalent to
—(x € A) A =~(x € B) by De Morgan’s law. We then
have x € A® and x € B¢, by the definition of
complement, so we have x € A® N B¢ by the definition

of intersection. Proof technique:
To show C = D show
x e C—->xeDand
xeD-oxeC



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A n BY)

Proof: Let x be an arbitrary object.
Suppose x € (AU B)¢.... Then, x € A® n BC.

Suppose x € A® N B¢. Then, by definition of
intersection, we have x € A¢ and x € B. That is, we
have —=(x € A) A =(x € B), which is equivalent to
—-(x € AV x € B) by De Morgan’s law. The last is
equivalent to —=(x € A U B), by the definition of union,
so we have shown x € (4 U B)¢, by the definition of
complement. B



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A° N BY)

Proof: Let x be an arbitrary object.
The stated bi-condition holds since:

x€E(AUB) =—(x€ AUB) def of -€
=—-(x€AVxE€EB) def of U
=-(x€A)A-(x€B) DeMorgan
=x € A“ Ax € B¢ def of -¢

Chains of equivalences =y € AC N BC def of N

are often easier to read

like this rather than as
English text




Distributive Laws

AN(BUC)=(ANB)U(ANC)
AUBNC)=({AUB)N(A UC)

TN



Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:BCc A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)=?

P(LD)="?



Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:BCc A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)={{M, W, F}, {M, W}, {M, F}, {W, F}, {M}, {W}, {F}, &}

P(D)={D} # &



Cartesian Product

AXB ={(a,b):a€ A,b EB}

R X R is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
7. X 7. is “the set of all pairs of integers”

IfA={1,2},B={a,b,c},then A X B={(1,a),(1,b), (1,0),
(2,a), (2,b), (2,c)}.



Cartesian Product

AXB ={(a,b):a€ A,b EB}

R X R is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
7. X 7. is “the set of all pairs of integers”

IfA={1,2},B={a,b,c},then A X B={(1,a),(1,b), (1,0),
(2,a), (2,b), (2,c)}.

What is AXD?



Cartesian Product

AXB ={(a,b):a€ A,b EB}

R X R is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
7. X 7. is “the set of all pairs of integers”

IfA={1,2},B={a,b,c},then A X B={(1,a),(1,b), (1,0),
(2,a), (2,b), (2,c)}.

AxXP={(a,b):a€ANDbDEP}={(a,b):a€A NF} =0



Representing Sets Using Bits

* Suppose universe U is {1,2, ..., n}
 Can represent set B € U as a vector of bits:
bib, ...b, where b; =1wheni€E€B
bi = 0wheni & B
— Called the characteristic vector of set B

 @Given characteristic vectors for A and B
— What is characteristic vector for AU B? AN B?



Bitwise Operations

01101101 Java: z=x|y

v 00110111
01111111

00101010 Java: z=x&y
A 00001111
00001010

01101101 Java: z=x"y
@ 00110111
01011010




A Useful Identity

 [f xandyarebits: (xPy)Dy="?

* What if x and y are bit-vectors?



Private Key Cryptography

* Alice wants to communicate message secretly to
Bob so that eavesdropper Eve who hears their
conversation cannot tell what Alice’s message is.

* Alice and Bob can get together and privately share
a secret key K ahead of time.

{ encrypt i | decrypt i
: plaintext | ciphertext : plaintext !
|SENDER———| key | | » | key ———> RECEIVER!
| message . | message |

| |
| | |
! | |




One-Time Pad

* Alice and Bob privately share random n-bit vector K
— Eve does not know K

* Later, Alice has n-bit message m to send to Bob
— Alice computes C=m @ K
— Alice sends C to Bob

— Bob computes m=C @ K whichis (m @ K) ® K

* Eve cannot figure out m from C unless she can
guess K




Russell’'s Paradox

S={x:x¢&x}

Suppose for contradiction that S € S...



Russell’'s Paradox

S={x:x¢&x}

Suppose for contradiction that S € S. Then, by definition of
S,S &S, but that’s a contradiction.

Suppose for contradiction that S € S. Then, by definition of
theset S, S € 5, but that’s a contradiction, too.

This is reminiscent of the truth value of the statement “This
statement is false.”



