
CSE 311: Foundations of Computing

Lecture 9:  Set Theory



Last Time: Proof Strategies: Counterexamples

To prove ¬"x	P(x), prove  ∃¬P(x) :
• Works by de Morgan’s Law: ¬∀𝒙	𝑷 𝒙 ≡ ∃𝒙¬𝑷(𝒙)
• All we need to do that is find an 𝒙 where 𝑷(𝒙) is false
• This example is called a counterexample to "𝒙	𝑷(𝒙).

e.g. Prove “Not every prime number is odd”

Proof: 2 is prime but not odd, a counterexample 
to the claim that every prime number is odd.



Last Time: Proof Strategies: Proof by Contrapositive

If we assume ¬q and derive ¬p, then we have proven  
¬q ® ¬p, which is equivalent to proving p ® q.

1.1. ¬𝒒 Assumption
...

1.3. ¬𝒑
1. 			¬𝒒	®	¬𝒑 Direct Proof Rule
2.					𝒑	®	𝒒 Contrapositive: 1                       



Last Time: Proof Strategies: Proof by Contrapositive

If we assume ¬q and derive ¬p, then we have proven  
¬q ® ¬p, which is equivalent to proving p ® q.

1.1. ¬𝒒 Assumption
...
1.3. ¬𝒑

1. 			¬𝒒	®	¬𝒑 Direct Proof Rule
2.					𝒑	®	𝒒 Contrapositive: 1

We will prove the contrapositive.

Suppose ¬𝒒.
...
Thus, ¬𝒑.



Last Time: Proof by Contradiction:  One way to prove ¬p

If we assume p and derive F (a contradiction), then 
we have proven ¬p.

1.1.  𝒑 Assumption
...
1.3.  𝗙

1.   𝒑	®	𝗙 Direct Proof rule
2.   ¬𝒑	Ú	𝗙 Law of Implication: 1
3.   ¬𝒑 Identity: 2



Last Time: Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we 
have proven ¬p.

1.1.  𝒑 Assumption
...
1.3.  𝗙

1.   𝒑	®	𝗙 Direct Proof rule
2.   ¬𝒑	Ú	𝗙 Law of Implication: 1
3.   ¬𝒑 Identity: 2

We will argue by contradiction.

Suppose 𝒑.
...
This shows 𝗙, a contradiction.



Even and Odd

Prove: “No integer is both even and odd.”
Formally, prove  ¬ $x	(Even(x)ÙOdd(x))	

Even(x)	º ∃𝑦	 𝑥 = 2𝑦
Odd(x)	º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate	Definitions

Integers
Domain	of	Discourse



Even and Odd

Prove: “No integer is both even and odd.”
Formally, prove  ¬ $x	(Even(x)ÙOdd(x))	

Proof:We	work	by	contradiction.	Suppose	that	x	is	an	
integer	that	is	both	even	and	odd.
Then,	x=2a	for	some	integer	a	and	x=2b+1	for	some	
integer	b.	This	means	2a=2b+1	and	hence	a=b+½.
But	two	integers	cannot	differ	by	½,	so	this	is	a	
contradiction.

Even(x)	º ∃𝑦	 𝑥 = 2𝑦
Odd(x)	º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate	Definitions

Integers
Domain	of	Discourse



Strategies

• Simple proof strategies already do a lot
– counter examples
– proof by contrapositive
– proof by contradiction

• Later we will cover a specific strategy that applies 
to loops and recursion (mathematical induction)



Applications of Predicate Logic

• Remainder of the course will use predicate logic to 
prove important properties of interesting objects
– start with math objects that are widely used in CS
– eventually more CS-specific objects

• Encode domain knowledge in predicate definitions
• Then apply predicate logic to infer useful results

Even(x)	º $y	(x	=	2⋅y)
Odd(x)	º $y	(x	=	2⋅y	+	1)

Predicate	Definitions
Integers

Domain	of	Discourse



Set Theory

Sets are collections of objects called elements. 

Write a	∈	B to say that a is an element of set B,
and a	∉	B to say that it is not.

Some	simple	examples
A	=	{1}
B	=	{1,	3,	2}
C	=	{☐,	1}
D	=	{{17},	17}
E	=	{1,	2,	7,	cat,	dog,	Æ,	α}



Some Common Sets

ℕ is	the	set	of	Natural	Numbers; ℕ =	{0,	1,	2,	…}
ℤ is	the	set	of	Integers;	ℤ =	{…,	-2,	-1,	0,	1,	2,	…}
ℚ is	the	set	of	Rational	Numbers;	e.g.	½,	-17,	32/48
ℝ is	the	set	of	Real	Numbers;	e.g.	1,	-17,	32/48,	π, 2�

[n] is	the	set	{1,	2,	…,	n} when	n is	a	natural	number
{}	=	Æ is	the	empty	set;	the	only set	with	no	elements



Sets can be elements of other sets

For	example
A	=	{{1},{2},{1,2},Æ}
B	=	{1,2}

Then	B ∈	A.



Definitions

• A and B are equal if they have the same elements

• A is a subset of B if every element of A is also in B

• Note:

A	=	B		º " x (x Î A	« x Î B)

A	Í B	º " x (x Î A	® x Î B)



Definition: Equality

A and B are equal if they have the same elements

A	=	B		º " x (x Î A	« x Î B)

A	=	{1,	2,	3}
B	=	{3,	4,	5}
C	=	{3,	4}
D	=	{4,	3,	3}
E	=	{3,	4,	3}
F	=	{4,	{3}}

Which sets are equal to each other?



Definition: Subset

A is a subset of B if every element of A is also in B

A	Í B	º " x (x Î A	® x Î B)

A	=	{1,	2,	3}
B	=	{3,	4,	5}
C	=	{3,	4}

QUESTIONS
ÆÍ A?
A	Í B?
C	Í B?



S = the set of all* x for which P(x) is true

S = the set of all x in A for which P(x) is true

Building Sets from Predicates

S	=	{x	:	P(x)}

S	=	{x	Î A	:	P(x)}

*in the domain of P, usually called the “universe” U



Set Operations

𝐴 ∪ 𝐵 = {	𝑥 ∶ 𝑥 ∈ 𝐴 ∨ 𝑥	 ∈ 𝐵	 }

𝐴 ∩ 𝐵 = {	𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 }

𝐴	\	𝐵 = {	𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵 }

Union

Intersection

Set Difference

A	=	{1,	2,	3}
B	=	{3,	5,	6}	
C	=	{3,	4}

QUESTIONS
Using	A,	B,	C	and	set	operations,	make…
[6]	=
{3}	=
{1,2}	=



More Set Operations

𝐴⊕ 𝐵 = {	𝑥 ∶ 𝑥 ∈ 𝐴 ⊕ 𝑥 ∈ 𝐵 }

𝐴	B = 	𝑥 ∶ 𝑥 ∉ 𝐴	 	
(with respect to universe U)                   

Symmetric
Difference

Complement

A	=	{1,	2,	3}
B	=	{1,	2,	4,	6}	
Universe:
U	=	{1,	2,	3,	4,	5,	6}

A⊕ B	=	{3,	4,	6}
𝖠B =	{4,5,6}



It’s Boolean algebra again

• Definition for È based on Ú

• Definition for Ç based on Ù

• Complement works like ¬



De Morgan’s Laws



De Morgan’s Laws

Proof technique:
To show C = D show
x Î C ® x Î D and
x Î D ® x Î C

Prove that (𝐴 ∪ 𝐵)D= 𝐴D ∩ 𝐵D

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 D ↔ 𝑥 ∈ 𝐴D ∩ 𝐵D)	

Proof:	Let	x	be	an	arbitrary	object.
Suppose	𝑥 ∈ 𝐴 ∪ 𝐵 D.	Then,	by	definition	of	
complement,	we	have	¬(𝑥 ∈ 𝐴 ∪ 𝐵).	The	latter	is	
equivalent	to	¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵),	which	is	equivalent	to	
¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵) by	De	Morgan’s	law.	We	then	
have	𝑥 ∈ 𝐴D and	𝑥 ∈ 𝐵D,	by	the	definition	of	
complement,	so	we	have	𝑥 ∈ 𝐴D ∩ 𝐵D by	the	definition	
of	intersection.



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 D = 𝐴D ∩ 𝐵D

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 D ↔ 𝑥 ∈ 𝐴D ∩ 𝐵D)	

Proof:	Let	x	be	an	arbitrary	object.
Suppose	𝑥 ∈ 𝐴 ∪ 𝐵 D....	Then,	𝑥 ∈ 𝐴D ∩ 𝐵D.
Suppose	𝑥 ∈ 𝐴D ∩ 𝐵D.	Then,	by	definition	of	
intersection,	we	have	𝑥 ∈ 𝐴D and	𝑥 ∈ 𝐵D.	That	is,	we	
have	¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵),	which	is	equivalent	to	
¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) by	De	Morgan’s	law.	The	last	is	
equivalent	to	¬(𝑥 ∈ 𝐴 ∪ 𝐵),	by	the	definition	of	union,	
so	we	have	shown	𝑥 ∈ 𝐴 ∪ 𝐵 D,	by	the	definition	of	
complement.



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 D = 𝐴D ∩ 𝐵D

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 D ↔ 𝑥 ∈ 𝐴D ∩ 𝐵D)	

Proof:	Let	x	be	an	arbitrary	object.
The	stated	bi-condition	holds	since:
𝑥 ∈ 𝐴 ∪ 𝐵 D ≡ ¬(𝑥 ∈ 𝐴 ∪ 𝐵) def of	-𝐶

≡ ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) def of	∪
≡ ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵) De	Morgan
≡ 𝑥 ∈ 𝐴D ∧ 𝑥 ∈ 𝐵D def of	-𝐶

≡ 𝑥 ∈ 𝐴D ∩ 𝐵D def of	∩Chains	of	equivalences	
are	often	easier	to	read	
like	this	rather	than	as	

English	text



Distributive Laws

𝐴 ∩ 𝐵 ∪ 𝐶 = 𝐴 ∩ 𝐵 ∪ 𝐴 ∩ 𝐶
𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ 𝐴	 ∪ 𝐶

C

A B

C

A B



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

				𝒫(Days)=?

𝒫(Æ)=?

𝒫 𝐴 = {	𝐵 ∶ 𝐵 ⊆ 𝐴	}



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

				𝒫(Days)= 𝖬,𝖶, 𝖥 , 𝖬,𝖶 , 𝖬, 𝖥 , 𝖶, 𝖥 , 𝖬 , 𝖶 , 𝖥 ,Æ

𝒫(Æ)={Æ}	≠Æ

𝒫 𝐴 = {	𝐵 ∶ 𝐵 ⊆ 𝐴	}



Cartesian Product

𝐴×𝐵 = {	 𝑎, 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵	}

ℝ	×	ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ	×	ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.



Cartesian Product

𝐴×𝐵 = {	 𝑎, 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵	}

ℝ	×	ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ	×	ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

What is 𝑨×∅?



Cartesian Product

𝐴×𝐵 = {	 𝑎, 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵	}

ℝ	×	ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ	×	ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

𝑨×∅ ={(𝒂, 𝒃) ∶ 𝒂 ∈ 𝑨	 ∧ 	𝒃 ∈ ∅} = {(𝒂, 𝒃) ∶ 𝒂 ∈ 𝑨		 ∧ 	𝗙} 	= 	∅



Representing Sets Using Bits

• Suppose universe 𝑈 is {1,2, … , 𝑛}
• Can represent set 𝐵 ⊆ 𝑈 as a vector of bits: 

𝑏]𝑏^ …𝑏_ where 𝑏` = 1 when 𝑖 ∈ 𝐵
𝑏` = 0	when 𝑖 ∉ 𝐵

– Called the characteristic vector of set B

• Given characteristic vectors for 𝐴 and 𝐵
– What is characteristic vector for 𝐴 ∪ 𝐵?  𝐴 ∩ 𝐵?



Bitwise Operations

01101101                Java: z=x|y
Ú 00110111

01111111              

00101010 Java: z=x&y
Ù 00001111

00001010  

01101101                Java: z=x^y
Å 00110111

01011010



A Useful Identity

• If x and y are bits:  (x Å y) Å y = ?

• What if x and y are bit-vectors?



Private Key Cryptography

• Alice wants to communicate message secretly to 
Bob so that eavesdropper Eve who hears their 
conversation cannot tell what Alice’s message is.

• Alice and Bob can get together and privately share 
a secret key K ahead of time.



One-Time Pad

• Alice and Bob privately share random n-bit vector K 
– Eve does not know K

• Later, Alice has n-bit message m to send to Bob
– Alice computes  C = m Å K
– Alice sends C to Bob
– Bob computes m = C Å K which is (m Å K) Å K

• Eve cannot figure out m from C unless she can 
guess K



Russell’s Paradox

𝑆 = {	𝑥 ∶ 𝑥 ∉ 𝑥	}
Suppose for contradiction that 𝑆 ∈ 𝑆…



Russell’s Paradox

𝑆 = {	𝑥 ∶ 𝑥 ∉ 𝑥	}
Suppose for contradiction that 𝑆 ∈ 𝑆.  Then, by definition of 
𝑆, 𝑆 ∉ 𝑆, but that’s a contradiction.

Suppose for contradiction that 𝑆 ∉ 𝑆.  Then, by definition of 
the set 𝑆, 𝑆 ∈ 𝑆, but that’s a contradiction, too.

This is reminiscent of the truth value of the statement “This 
statement is false.”


