CSE 311: Foundations of Computing

Lecture 9: English Proofs \& Proof Strategies

THIS IS GOING TO BE

ONE OF THOSE WEIRD, DARK-MAGIC PROOFS, ISN'T IT? I CAN TELL.

NOW, LET'S ASSUME THE CORRECT ANSWER WILL EVENTUALLY BE WRITTEN ON THIS BOARD AT THE COORDINATES (x, y). IF WE-

Last class: Inference Rules for Quantifiers

Intro \forall "Let a be arbitrary ${ }^{* " \ldots} \frac{\mathrm{P}(\mathrm{a})}{\therefore \quad \forall \mathrm{PP}(\mathrm{x})}$

* in the domain of P . No other name in P depends on a

$\therefore P(c)$ for some special** ${ }^{*}$
${ }^{* *}$ c is a NEW name.
List all dependencies for c.

Dependencies

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
b depends on a since it appears inside the expression " $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a})$ "

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a}) \quad$ Elim $\forall: 1$
4. $\mathrm{b} \geq \mathrm{a} \quad$ Elim \exists : b special depends on a
5. $\forall x(b \geq x) \quad$ Intro $\forall: 2,4$
6. $\exists y \forall x(y \geq x) \quad$ Intro $\exists: 5$

Can't Intro \forall with "Let a be an arbitrary ... $\mathrm{P}(\mathrm{a})$ " because $\mathrm{P}(\mathrm{a})=$ " $\mathrm{b} \geq \mathrm{a}$ " uses object b , which depends on a !

Dependencies

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
b depends on a since it appears inside the expression " $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a})$ "

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists y(y \geq a) \quad$ Elim $\forall: 1$
4. $\mathrm{b} \geq \mathrm{a} \quad$ Elim \exists : b special depends on a
5. $\forall x(b \geq x) \quad$ Intro $\forall: 2,4$
6. $\exists y \forall x(y \geq x)$ Intro $\exists: 5$

Have instead shown $\forall x(b(x) \geq x)$
where $\mathbf{b}(x)$ is a number that is possibly different for each x

Formal Proofs

- In principle, formal proofs are the standard for what it means to be "proven" in mathematics
- almost all math (and theory CS) done in Predicate Logic
- But they are tedious and impractical
- e.g., applications of commutativity and associativity
- Russell \& Whitehead's formal proof that 1+1 = 2 is several hundred pages long we allowed ourselves to cite "Arithmetic", "Algebra", etc.
- Similar situation exists in programming...

Programming

$$
\begin{aligned}
& \% a=\text { add } \% i, 1 \\
& \% b=\text { mod } \% a, \% n \\
& \% c=\text { add } \% a r r, \% b \\
& \% d=\text { load } \% c \\
& \% e=\text { add \%arr, \%i } \\
& \text { store \%e, \%d }
\end{aligned}
$$

$$
\operatorname{arr}[i]=\operatorname{arr}[(i+1) \% n] ;
$$

Assembly Language

Programming vs Proofs

$$
\begin{aligned}
& \% a=\text { add \%i, } 1 \\
& \% b=\bmod \% a, \% n \\
& \% c=\text { add \%arr, \%b } \\
& \% d=\text { load \%c } \\
& \% e=\text { add \%arr, \%i } \\
& \text { store \%e, \%d }
\end{aligned}
$$

Assembly Language for Programs

Given
Given
\wedge Elim: 1
Double Negation: 4
V Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs

Proofs

Given
Given
\wedge Elim: 1
Double Negation: 4
v Elim: 3, 5
MP: 2, 6

Assembly Language for Proofs
what is the "Java" for proofs?

High-level Language
for Proofs

Proofs

Given
Given
\wedge Elim: 1
Double Negation: 4
V Elim: 3, 5
MP: 2, 6

Assembly Language for Proofs

English

- Formal proofs follow simple well-defined rules and should be easy for a machine to check
- as assembly language is easy for a machine to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
- also easy to check with practice
(almost all actual math and theory CS is done this way)
- English proof is correct if the reader believes they could translate it into a formal proof
(the reader is the "compiler" for English proofs)

Last class: Even and Odd

Prove: "The square of every even number is even."

Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(a=2 y)$
$2.3 \mathrm{a}=2 \mathrm{~b}$
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right)$
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even $\left(\mathrm{a}^{2}\right)$
2. Even $(\mathrm{a}) \rightarrow$ Even $\left(\mathrm{a}^{2}\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Assumption
Definition of Even
Elim \exists : b special depends on a
Algebra
Intro \exists rule
Definition of Even
Direct proof rule Intro \forall : 1,2

English Proof: Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove"The square of every even integer is even."

Let a be an arbitrary integer.
Suppose a is even.
Then, by definition, $a=2 b$ for some integer b (dep on a).

Squaring both sides, we get $a^{2}=4 b^{2}=2\left(2 b^{2}\right)$.

So a^{2} is, by definition, even.
Since a was arbitrary, we have shown that the square of every even number is even.

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
$2.2 \exists y(a=2 y) \quad$ Definition
$2.3 \mathrm{a}=2 \mathrm{~b} \quad \mathrm{~b}$ special depends on a
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right)$ Algebra

$$
\begin{aligned}
& 2.5 \text { } \exists \mathrm{y}\left(\mathrm{a}^{2}=2 \mathrm{y}\right) \\
& 2.6 \text { Even }\left(\mathrm{a}^{2}\right) \quad \text { Definition }
\end{aligned}
$$

2. $\operatorname{Even}(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathrm{a}^{2}\right)$
3. $\forall \mathrm{x}\left(\operatorname{Even}(\mathrm{x}) \rightarrow \operatorname{Even}\left(\mathrm{x}^{2}\right)\right)$

English Proof: Even and Odd

$\operatorname{Even}(x) \equiv \exists y \quad(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$
Domain: Integers
Prove "The square of every even integer is even."

Proof: Let a be an arbitrary integer. Suppose a is even.
Then, $b y$ definition, $a=2 b$ for some integer b (depending on a). Squaring both sides, we get $a^{2}=4 b^{2}=$ $2\left(2 b^{2}\right)$. So a^{2} is, by definition, is even.

Since a was arbitrary, we have shown that the square of every even number is even.

Even and Odd \begin{tabular}{|l|}

\hline | Predicate Definitions |
| :--- |
| $\operatorname{Even}(\mathrm{x}) \equiv \exists y(x=2 y)$ |
| $\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$ |

\hline

\quad

Domain of Discourse

\hline Integers

\hline
\end{tabular}

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Even and Odd

Predicate Definitions
$\operatorname{Even}(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary integers. Suppose that both are odd.
Then, $x=2 a+1$ for some integer a (depending on x) and $y=2 b+1$ for some integer b (depending on x). Their sum is $x+y=(2 a+1)+(2 b+1)=2 a+2 b+2=2(a+b+1)$, so $x+y$ is, by definition, even.
Since x and y were arbitrary, the sum of any two odd integers is even.

English Proof: Even and Odd

$\operatorname{Even}(x) \equiv \exists y \quad(x=2 y)$ $\operatorname{Odd}(\mathrm{x}) \equiv \exists y(\mathrm{x}=2 \mathrm{y}+1)$ Domain: Integers

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

Suppose that both are odd.
Then, $\mathrm{x}=2 \mathrm{a}+1$ for some integer a (depending on x) and $y=2 b+1$ for some integer b (depending on x).

Their sum is $x+y=\ldots=2(a+b+1)$
so $x+y$ is, by definition, even.

Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

2.1	$\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})$	Assumption
2.2	$\operatorname{Odd}(\mathbf{x})$	Elim \wedge : 2.1
2.3	$\operatorname{Odd}(\mathrm{y})$	Elim ^: 2.1
2.4	$\exists \mathrm{z}(\mathrm{x}=2 \mathrm{z}+1)$	Def of Odd: 2.2
2.5	$x=2 a+1$	Elim \exists : 2.4 ($\mathrm{a} \mathrm{dep} \mathrm{x)}$
2.5	$\exists \mathrm{z}(\mathrm{y}=2 \mathrm{z}+1)$	Def of Odd: 2.3
2.6	$y=2 b+1$	Elim \exists : 2.5 (b dep y)
2.4	$x+y=\ldots=2(a+b+1)$	Algebra
2.5	$\exists z(x+y=2 z)$	Intro $\mathrm{J}^{\text {: } 2.4}$
2.6	Odd(\mathbf{b}^{2})	Def of Even

2. $\operatorname{Odd}(\mathbf{b}) \rightarrow \operatorname{Odd}\left(\mathbf{b}^{2}\right)$
3. $\forall x\left(\operatorname{Odd}(x) \rightarrow \operatorname{Odd}\left(x^{2}\right)\right)$

Rational Numbers

- A real number x is rational iff there exist integers p and q with $q \neq 0$ such that $x=p / q$.

Rational $(x) \equiv \exists \mathrm{p} \exists \mathrm{q}((\mathrm{x}=\mathrm{p} / \mathrm{q}) \wedge \operatorname{Integer}(\mathrm{p}) \wedge \operatorname{Integer}(\mathrm{q}) \wedge \mathrm{q} \neq 0)$

Rationality

Predicate Definitions
Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Prove: "If x and y are rational, then $x y$ is rational."
Formally, prove (Rational(x) \wedge Rational $(y)) \rightarrow$ Rational $(x+y)$

Rationality

Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Prove: "If x and y are rational, then xy is rational."

Proof: Suppose that x and y are rational. Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=c / d$ for some integers c, d, where $d \neq 0$.
Multiplying, we get that $x y=(a c) /(b d)$. Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, xy is rational.

Rationality

Predicate Definitions

Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Prove: "The product of two rationals is rational."
Proof: Let x and y be arbitrary.
Suppose that x and y are rational. Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=c / d$ for some integers c, d, where $d \neq 0$.
Multiplying, we get that $x y=(a c) /(b d)$. Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, xy is rational.
Since x and y were arbitrary, we have shown that the product of any two rationals is rational. ■

Rationality

Predicate Definitions
 Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then xy is rational."

Suppose that x and y are rational.

Then, $x=a / b$ for some integers a, b, where $b \neq 0$ and $y=c / d$ for some integers c, d, where $\mathrm{d} \neq 0$.
1.1 Rational $(x) \wedge \operatorname{Rational}(y)$ Assumption
$1.4 \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Def Rational: 1.2
$1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0)$ Elim \exists : 1.4
$1.6 \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Def Rational: 1.3
$1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)$ Elim \exists : 1.4

Rationality

Predicate Definitions
 Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then xy is rational."

Suppose that x and y are rational.

Then, $x=a / b$ for some integers a, b, where $b \neq 0$ and $y=c / d$ for some integers c, d, where $\mathrm{d} \neq 0$.
1.1 Rational $(x) \wedge \operatorname{Rational}(y)$ Assumption
??
$1.4 \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Def Rational: 1.2
$1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0)$ Elim \exists : 1.4
$1.6 \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Def Rational: 1.3
$1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)$
Elim \exists : 1.4

Rationality

Predicate Definitions
 Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then xy is rational."

Suppose that x and y are rational.

Then, $x=a / b$ for some integers a, b, where $b \neq 0$ and $y=c / d$ for some integers c, d, where $\mathrm{d} \neq 0$.
1.1 Rational $(x) \wedge \operatorname{Rational}(y)$ Assumption
1.2 Rational (x)
1.3 Rational (y) Elim \wedge : 1.1
1.4 $\exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$

Def Rational: 1.2
$1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0)$
Elim \exists : 1.4
$1.6 \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Def Rational: 1.3
$1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)$
Elim $3: 1.4$

Rationality

Predicate Definitions
 Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

$$
\begin{aligned}
& 1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0) \\
& 1.7(y=c / d) \wedge \text { Integer }(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)
\end{aligned}
$$

Multiplying, we get $x y=(a c) /(b d)$.

$$
1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d)
$$

Algebra

Rationality

Predicate Definitions
 Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

$$
\begin{aligned}
& 1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0) \\
& 1.7(y=c / d) \wedge \text { Integer }(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)
\end{aligned}
$$

Multiplying, we get $x y=(a c) /(b d)$.

$$
\begin{array}{r}
1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d) \\
\\
\text { Algebra }
\end{array}
$$

Rationality

Predicate Definitions
 Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

Multiplying, we get $x y=(a c) /(b d)$.

$$
\begin{aligned}
& 1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0) \\
& \cdots \\
& 1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0) \\
& 1.8 x=a / b \\
& \begin{array}{lc}
1.9 y=c / d & \operatorname{Elim} \wedge: 1.5 \\
1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d) \\
\text { Algebra }
\end{array}
\end{aligned}
$$

Rationality

Predicate Definitions
 Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

* Oops, I skipped steps here...

Rationality

[^0]We left out the parentheses...

Rationality

Predicate Definitions
 Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

	$1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0)$	
\cdots	$1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)$	
\cdots		
	$1.13 b \neq 0$	Elim $\wedge: 1.5$
\cdots	$1.16 c \neq 0$	Elim $\wedge: 1.7$
Since \mathbf{b} and d are non-zero, so is bd.	$1.17 b d \neq 0$	Prop of Integer Mult

Rationality

Predicate Definitions
 Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then xy is rational."

	$1.5(x=a / b) \wedge \operatorname{Integer}(a)$	$\wedge \operatorname{Integer}(b) \wedge(b \neq 0)$
	$1.7(y=c / d) \wedge \text { Integer }(c)$	$\wedge \operatorname{Integer}(d) \wedge(d \neq 0)$
	1.19 Integer (a)	Elim \wedge : 1.5*
	1.22 Integer(b)	Elim \wedge : 1.5*
	-	
	1.24 Integer(c)	Elim \wedge : 1.7*
	...	
	1.27 Integer (d)	Elim \wedge : 1.7*
	1.28 Integer ($a c$)	Prop of Integer Mult
Furthermore, ac and bd are integers.	1.29 Integer ($b d$)	Prop of Integer Mult

Rationality

Predicate Definitions
 Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then xy is rational."

$1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d)$	
$1.17 b d \neq 0$	Prop of Integer Mult
...	
1.28 Integer (ac)	Prop of Integer Mult
1.29 Integer $(b d)$	Prop of Integer Mult
1.30 Integer $(b d) \wedge(b c \neq 0)$	Intro \wedge : 1.29, 1.17
1.31 Integer $(a c) \wedge \operatorname{Integer}(b d) \wedge(b c \neq 0)$	
Intro \wedge : 1.28, 1.30	
$1.32(x y=(a / b) /(c / d)) \wedge$ Integer $(a c) \wedge$	
Integer $(b d) \wedge(b c \neq 0)$	Intro ^: 1.10, 1.31
$1.33 \exists p \exists q((x y=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$	
	Intro Э: 1.32
1.34 Rational($x y$)	Def of Rational: 1.32

Rationality

Predicate Definitions
 Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then xy is rational."

Suppose that x and y are rational.

Furthermore, ac and bd are integers.

By definition, then, xy is rational.
1.1 Rational $(x) \wedge \operatorname{Rational}(y)$ Assumption

$$
\begin{array}{ll}
1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d) \\
\cdots & \\
\text { 1.17 } b d \neq 0 & \text { Prop of Integer Mult } \\
\cdots & \\
\text { 1.28 Integer }(a c) & \text { Prop of Integer Mult } \\
\text { 1.29 Integer }(b d) & \text { Prop of Integer Mult } \\
\cdots & \\
\text { 1.33 Rational }(x y) & \text { Def of Rational: 1.32 }
\end{array}
$$

What's missing?

Rationality

Predicate Definitions
 Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then xy is rational."

Suppose that x and y are rational.

Furthermore, ac and bd are integers.

By definition, then, xy is rational.
1.1 Rational $(x) \wedge \operatorname{Rational}(y)$ Assumption

$$
\begin{array}{ll}
1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d) \\
\cdots & \\
\text { 1.17 } b c \neq 0 & \text { Prop of Integer Mult } \\
\cdots & \\
\text { 1.28 Integer }(a c) & \text { Prop of Integer Mult } \\
\text { 1.29 Integer }(b d) & \text { Prop of Integer Mult } \\
\cdots & \\
\text { 1.33 Rational }(x y) & \text { Def of Rational: 1.32 }
\end{array}
$$

1. Rational $(x) \wedge \operatorname{Rational}(y) \rightarrow \operatorname{Rational}(x y)$

Direct Proof

Rationality

Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Prove: "If x and y are rational, then xy is rational."

Proof: Suppose that x and y are rational. Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=c / d$ for some integers c, d, where $d \neq 0$.
Multiplying, we get that $x y=(a c) /(b d)$.
Since b and d are both non-zero, so is bd. Furthermore, $a c$ and bd are integers. By definition, then, $x y$ is rational.

English Proofs

- High-level language let us work more quickly
- should not be necessary to spill out every detail
- reader checks that the writer is not skipping too much
- examples so far

```
skipping Intro ^ and Elim ^
not stating existence claims (immediately apply Elim \exists to name the object)
not stating that the implication has been proven ("Suppose X... Thus, Y." says it already)
- (list will grow over time)
```

- English proof is correct if the reader believes they could translate it into a formal proof
- the reader is the "compiler" for English proofs

Proof Strategies

Proof Strategies: Counterexamples

To prove $\neg \forall x P(x)$, prove $\exists \neg P(x)$:

- Works by de Morgan's Law: $\neg \forall x \boldsymbol{P}(x) \equiv \exists x \neg P(x)$
- All we need to do that is find an x where $P(x)$ is false
- This example is called a counterexample to $\forall \boldsymbol{x} \boldsymbol{P}(\boldsymbol{x})$.

e.g. Prove "Not every prime number is odd"

Proof: $\mathbf{2}$ is prime but not odd, a counterexample to the claim that every prime number is odd.

Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

$$
\text { 1.1. } \neg q \quad \text { Assumption }
$$

1.3. $\neg p$

1. $\neg q \rightarrow \neg p$

Direct Proof Rule
2. $p \rightarrow q$

Contrapositive: 1

Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg \mathrm{q} \rightarrow \neg \mathrm{p}$, which is equivalent to proving $\mathrm{p} \rightarrow \mathrm{q}$.

We will prove the contrapositive.
Suppose $\neg q$.

Thus, $\neg p$.
1.1. $\neg q \quad$ Assumption
...
1.3. $\neg p$

1. $\neg q \rightarrow \neg p \quad$ Direct Proof Rule
2. $\boldsymbol{p} \rightarrow \boldsymbol{q} \quad$ Contrapositive: 1

Proof by Contradiction: One way to prove $\neg \mathrm{p}$

If we assume p and derive F (a contradiction), then we have proven $\neg \mathrm{p}$.
1.1. p Assumption
1.3. F

1. $p \rightarrow F \quad$ Direct Proof rule
2. $\neg p \vee \mathrm{~F} \quad$ Law of Implication: 1
3. $\neg p$

Identity: 2

Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we have proven \neg p.

We will argue by contradiction.
Suppose p.

This shows F, a contradiction.

	1.1. p	Assumption
	\ldots	
	1.3. F	
1. $p \rightarrow \mathrm{~F}$	Direct Proof rule	
2. $\neg p \vee \mathrm{~F}$	Law of Implication: 1	
3. $\neg p$	Identity: 2	

Even and Odd \begin{tabular}{|l|}
\hline Predicate Definitions

\hline | Even $(x) \equiv \exists y(x=2 y)$ |
| :--- |
| $\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$ |

\hline
\end{tabular}

Prove: "No integer is both even and odd."
Formally, prove $\neg \exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$

Even and Odd

Predicate Definitions
$\operatorname{Even}(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove: "No integer is both even and odd."
Formally, prove $\neg \exists x(\operatorname{Even}(x) \wedge O d d(x))$
Proof: We work by contradiction. Suppose that x is an integer that is both even and odd.
Then, $x=2 a$ for some integer a and $x=2 b+1$ for some integer b. This means $2 a=2 b+1$ and hence $a=b+1 / 2$.
But two integers cannot differ by $1 / 2$, so this is a contradiction. ■

Strategies

- Simple proof strategies already do a lot
- counter examples
- proof by contrapositive
- proof by contradiction
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Next Time: Set Theory

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

$$
\begin{aligned}
& \text { Some simple examples } \\
& A=\{1\} \\
& B=\{1,3,2\} \\
& C=\{\square, 1\} \\
& D=\{\{17\}, 17\} \\
& E=\{1,2,7, \text { cat, dog, } \varnothing, \alpha\}
\end{aligned}
$$

[^0]: Predicate Definitions
 Rational $(x) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

 $$
 \begin{aligned}
 & \text { 1.5 }(x=a / b) \wedge(\operatorname{Integer}(a) \wedge(\operatorname{Integer}(b) \wedge(b \neq 0))) \\
 & \ldots \\
 & \text { 1.7 }(y=c / d) \wedge(\operatorname{Integer}(c) \wedge(\operatorname{Integer}(d) \wedge(d \neq 0))) \\
 & \text { 1.11 } \operatorname{Integer}(a) \wedge(\operatorname{Integer}(b) \wedge(b \neq 0))) \\
 & \text { 1.12 Integer }(b) \wedge(b \neq 0) \quad \operatorname{Elim} \wedge: 1.5 \\
 & \text { 1.13 } b \neq 0 \quad E \operatorname{Elim} \wedge: 1.11 \\
 & \text { Elim } \wedge: 1.12
 \end{aligned}
 $$

