CSE 311: Foundations of Computing

Lecture 9: English Proofs & Proof Strategies
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Last class: Inference Rules for Quantifiers

P(c) for some c . Vx P(x)
Intro 3 - ElimV _—
Ix P(x) .. P(a) for any a
~——{Let a be arbitrary*”...P(a)  [Eim3 Ix P(x)
Vx P(x) .. P(c) for some special** c
*in the domain of P. No other ** ~is 3 NEW name.

name in P depends on a List all dependencies for c.




Dependencies

Over integer domain: Vx dy (y = x) is True but JyVx (y = x) is False

b depends on a since it appears inside the expression “3y (y = a)”

BAD “PROOF”
1. Vx3dy(y = x) Given
2. Let a be an arbitrary integer
3. dy(y=a) ElimV: 1
4., b=a Elim 3: b special depends on a
5. Vx(b=>x) Intro V: 2,4
f’ 6. dyVx(y = x) Introd: 5

Can’t Intro V with “Let a be an arbitrary ... P(a)”
because P(a) = “b > a” uses object b, which depends on a!



Dependencies

Over integer domain: Vx dy (y = x) is True but JyVx (y = x) is False

b depends on a since it appears inside the expression “3y (y = a)”

BAD “PROOF”
1. Vx3dy(y = x) Given
2. Let a be an arbitrary integer
3. dy(y=a) ElimV: 1
4., b=a Elim 3: b special depends on a
5. Vx(b=>x) Intro V: 2,4
ﬁ 6. dyVx(y = x) Introd: 5

Have instead shown Vx (b(x) = x)
where b(x) is a number that is possibly different for each X



Formal Proofs

* |n principle, formal proofs are the standard for
what it means to be “proven” in mathematics
— almost all math (and theory CS) done in Predicate Logic

* But they are tedious and impractical
— e.g., applications of commutativity and associativity

— Russell & Whitehead’s formal proof that 1+1 =2 is
several hundred pages long
we allowed ourselves to cite “Arithmetic”, “Algebra”, etc.

* Similar situation exists in programming...



Programming

%a = add %i, 1

%b = mod %a, %n

%c = add %arr, %b

%d = load %c

%e = add %arr, %i

store %e, %d arr[i] = arr[(i+1) % n];

Assembly Language High-level Language



Programming vs Proofs

%a = add %i, 1
%b = mod %a, %n
%c = add %arr, %b
%d = load %c

%e = add %arr, %i
store %e, %d

Assembly Language
for Programs

Given

Given

/\ Elim: 1

Double Negation: 4
V Elim: 3,5

MP: 2, 6

Assembly Language
for Proofs



Proofs

Given

Given

A Elim: 1 what is the “Java”
Double Negation: 4 for proofs?

V Elim: 3,5

MP: 2, 6

Assembly Language High-level Language
for Proofs for Proofs



Proofs

Given

Given

/\ Elim: 1

Double Negation: 4
V Elim: 3, 5

MP: 2, 6

English

Assembly Language High-level Language
for Proofs for Proofs



Proofs

* Formal proofs follow simple well-defined rules and
should be easy for a machine to check
— as assembly language is easy for a machine to execute

* English proofs correspond to those rules but are
designhed to be easier for humans to read

— also easy to check with practice
(almost all actual math and theory CS is done this way)

— English proof is correct if the reader believes they could
translate it into a formal proof
(the reader is the “compiler” for English proofs)




Even(x) =3dy (x=2y)
Last class: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 3Ty (a=2y) Definition of Even
2.3 a=2b Elim 3: b special depends on a
2.4 a’=4b’=2(2b%) Algebra
2.5 3Ty (a?=2y) Intro J rule
2.6 Even(a?) Definition of Even
2. Even(a)—>Even(a?) Direct proof rule

3. Vx (Even(x)—>Even(x?)) Intro V: 1,2



English Proof: Even and Odd

Even(x) =3y (x=2y)
Odd(x) =3y (x=2y+1)
Domain: Integers

Prove “The square of every even integer is even.”

Let a be an arbitrary integer.

Suppose a is even.
Then, by definition, a = 2b for

some integer b (dep on a).

Squaring both sides, we get
a2=4b? = 2(2b?).

So a? is, by definition, even.

Since a was arbitrary, we have
shown that the square of every
even humber is even.

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 3y (a=2y) Definition
2.3 a=2b b special depends on a

2.4 a?=4b?=2(2b?) Algebra

2.5 3Ty (a%=2y)

2.6 Even(a?) Definition

2. Even(a)—>Even(a?)
3. Vx (Even(x)—Even(x?))



English Proof: Even and Odd

Even(x) =3y (x=2y)
Odd(x) =3y (x=2y+1)
Domain: Integers

Prove “The square of every even integer is even.”

Proof: Let a be an arbitrary integer. Suppose a is even.

Then, by definition, a = 2b for some integer b
(depending on a). Squaring both sides, we get a?=4b? =

2(2b?). So a?is, by definition, is even.

Since a was arbitrary, we have shown that the square of

every even number is even. B




Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd 0dd(x) =3y (x = 2y + 1)

Domain of Discourse

Integers

Prove “The sum of two odd nhumbers is even.”

Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))




Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd 0dd(x) =3y (x = 2y + 1)

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”

Proof: Let x and y be arbitrary integers. Suppose that
both are odd.

Then, x = 2a+1 for some integer a (depending on x) and
y = 2b+1 for some integer b (depending on x). Their sum
is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is,
by definition, even.

Since x and y were arbitrary, the sum of any two odd
Integers is even. W



Even(x) =3y (x=2y)
English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove “The sum of two odd numbers is even.”

Let x and y be arbitrary integers. 1. Letxbe an arbitrary integer
2. Lety be an arbitrary integer

2.1 0Odd(x) A Odd(y) Assumption

Suppose that both are odd. 2.2 Odd(x) Elim A: 2.1

2.3 0dd(y) Elim A: 2.1
Then, x = 2a+1 for some integer 2.4 3z (x=2z+1) Def of Odd: 2.2
a (depending on x) and 2.5 x=2a+l Elim 3: 2.4 (a dep x)
y = 2b+1 for some integer b 2.5 3z (y=2z+1) Def of Odd: 2.3
(depending on x). 2.6 y=2b+1l Elim 3: 2.5 (b dep y)
Their sum is x+y = ... = 2(a+b+1) 2.4 xty=...=2(a+b+1) Algebra

2.5 3z (x+y = 22) Intro 3: 2.4
so x+y is, by definition, even. 2.6 0dd(b?) Def of Even

2. Odd(b)—>0dd(b?)

Since x and y were arbitrary, the
3. Vx (0dd(x)—0dd(x?))

sum of any odd integers is even.



Domain of Discourse

Rational Numbers " Real Numbers |

* A real number x is rational iff there exist integers p
and q with q=0 such that x=p/q.

Rational(x) =3dp dqg ((x=p/d) A Integer(p) A Integer(q) A q=0)



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

\

Prove: “If x and y are rational, then xy is rational.”
Formally, prove (Rational(x) A Rational(y))—Rational(x+y)




Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

Prove: “If x and y are rational, then xy is rational.”

Proof: Suppose that x and y are rational. Then, x = a/b
for some integers a, b, where b#0, and y = ¢/d for some
integers c,d, where d=0.

Multiplying, we get that xy = (ac)/(bd). Since b and d are
both non-zero, so is bd. Furthermore, ac and bd are
integers. By definition, then, xy is rational.



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary.

Suppose that x and y are rational. Then, x = a/b for
some integers a, b, where b0, and y = c/d for some
integers c,d, where d=0.

Multiplying, we get that xy = (ac)/(bd). Since b and d are
both non-zero, so is bd. Furthermore, ac and bd are
integers. By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the
product of any two rationals is rational. B



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

\

Prove: “If x and y are rational, then xy is rational.”

Suppose that x and y are rational. 1.1 Rational(x) A Rational(y) Assumption

Then, x = a/b for some integers 1.4 3p 3q ((x = p/q) A Integer(p) A Integer(q) A (q # 0))

a, b, where b0 and y = ¢/d for Def Rational: 1.2

some integers c,d, where d-0. 1.5 (x = a/b) A Integer(a) A Integer(b) A (b # 0)
Elim3:1.4

1.6 3p 3 ((x = p/q) A Integer(p) A Integer(q) A (q # 0))
Def Rational: 1.3

1.7 (y = c¢/d) A Integer(c) A Integer(d) A (d # 0)
Elim3:1.4



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

\

Prove: “If x and y are rational, then xy is rational.”

Suppose that x and y are rational. 1.1 Rational(x) A Rational(y) Assumption
»
Then, x = a/b for some integers 1.4 3p 3q ((x = p/q) A Integer(p) A Integer(q) A (q # 0))
a, b, where b0 and y = ¢/d for Def Rational: 1.2
some integers c,d, where d-0. 1.5 (x = a/b) A Integer(a) A Integer(b) A (b # 0)
Elim3:1.4

1.6 3p 3 ((x = p/q) A Integer(p) A Integer(q) A (q # 0))
Def Rational: 1.3

1.7 (y = c¢/d) A Integer(c) A Integer(d) A (d # 0)
Elim3:1.4



Rationality

Domain of Discourse
Real Numbers

Predicate Definitions

\

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

Prove: “If x and y are rational, then xy is rational.”

Suppose that x and y are rational.

Then, x = a/b for some integers
a, b, where b0 and y = ¢/d for
some integers c,d, where d=0.

1.1 Rational(x) A Rational(y) Assumption
1.2 Rational(x) ElimA: 1.1
1.3 Rational(y) Elim A: 1.1

1.4 3p 39 ((x = p/q) A Integer(p) A Integer(q) A (q # 0))
Def Rational: 1.2

1.5 (x = a/b) A Integer(a) A Integer(b) A (b # 0)
Elim3:1.4

1.6 3p 3g ((x = p/q) A Integer(p) A Integer(q) A (q # 0))
Def Rational: 1.3

1.7 (y = c/d) A Integer(c) A Integer(d) A (d # 0)
Elim3: 1.4



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

\

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) A Integer(a) A Integer(b) A (b # 0)

1.7 (y = c¢/d) A Integer(c) A Integer(d) A (d + 0)

Multiplying, we get xy = (ac)/(bd). 1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)
Algebra



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

\

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) A Integer(a) A Integer(b) A (b # 0)

1.7 (y = c¢/d) A Integer(c) A Integer(d) A (d + 0)

??

Multiplying, we get xy = (ac)/(bd). 1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)
Algebra



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

\

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) A Integer(a) A Integer(b) A (b # 0)

1.7 (y = c¢/d) A Integer(c) A Integer(d) A (d + 0)

1.8 x =a/b Elim A: 1.5
1.9 y=c/d Elim A: 1.7
Multiplying, we get xy = (ac)/(bd). 1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)

Algebra



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

\

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) A Integer(a) A Integer(b) A (b # 0)
1.7 (y = c¢/d) A Integer(c) A Integer(d) A (d + 0)

1.11 b #0 Elim A: 1.5%

1.12 ¢c# 0 Elim A: 1.7
Since b and d are non-zero, so is bd. 1.13 bc# 0 Prop of Integer Mult

* Oops, | skipped steps here...



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

\

Prove: “If x and y are rational, then xy is rational.”

;..5 (x = a/b) A (Integer(a) A (Integer(b) A (b # 0)))
;..7 (y = c/d) A (Integer(c) A (Integer(d) A (d + 0)))

;..11 Integer(a) A (Integer(b) A (b # 0)))

Elim A: 1.5
1.12 Integer(b) A (b # 0) Elim A: 1.11
1.13 b # 0 Elim A: 1.12

We left out the parentheses...



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

\

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) A Integer(a) A Integer(b) A (b # 0)
1.7 (y = c¢/d) A Integer(c) A Integer(d) A (d + 0)
1.13 b #0 Elim A: 1.5

1.16 ¢ # 0 Elim A: 1.7
Since b and d are non-zero, so is bd. 1.17 bd = 0 Prop of Integer Mult



Rationality

Domain of Discourse

Real Numbers

Predicate Definitions

\

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

Prove: “If x and y are rational, then xy is rational.”

Furthermore, ac and bd are integers.

1.5 (x = a/b) A Integer(a) A Integer(b) A (b # 0)

1.7 (y = c¢/d) A Integer(c) A Integer(d) A (d + 0)

1.19 Integer(a)
1.22 Integer(b)
1.24 Integer(c)

1.27 Integer(d)
1.28 Integer(ac)
1.29 Integer(bd)

Elim A: 1.5%
Elim A: 1.5%
Elim A: 1.7*

Elim A: 1.7*
Prop of Integer Mult
Prop of Integer Mult



Rationality

Domain of Discourse

Real Numbers

Predicate Definitions

\

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

Prove: “If x and y are rational, then xy is rational.”

By definition, then, xy is rational.

;..10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)

1.17 bd # 0 Prop of Integer Mult

1.28 Integer(ac) Prop of Integer Mult
1.29 Integer(bd) Prop of Integer Mult

1.30 Integer(bd) A (bc # 0) Intro A: 1.29, 1.17
1.31 Integer(ac) A Integer(bd) A (bc # 0)

Intro A: 1.28, 1.30
1.32 (xy = (a/b)/(c/d)) A Integer(ac) A

Integer(bd) A (bc # 0) Intro A: 1.10, 1.31
1.33 3p 3¢ ((xy = p/q) A Integer(p) A Integer(q) A (q # 0))
Intro 3: 1.32

1.34 Rational(xy) Def of Rational: 1.32



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

\

Prove: “If x and y are rational, then xy is rational.”

Suppose that x and y are rational. 1.1 Rational(x) A Rational(y) Assumption
1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)

1.17 bd # 0 Prop of Integer Mult

_ 1.28 Integer(ac) Prop of Integer Mult
Furthermore, ac and bd are integers. 1.29 Integer(bd) Prop of Integer Mult
By definition, then, xy is rational. 1.33 Rational(xy) Def of Rational: 1.32

What’s missing?



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

\

Prove: “If x and y are rational, then xy is rational.”

Suppose that x and y are rational. 1.1 Rational(x) A Rational(y) Assumption
1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)

1.17 bc# 0 Prop of Integer Mult

_ 1.28 Integer(ac) Prop of Integer Mult
Furthermore, ac and bd are integers. 1.29 Integer(bd) Prop of Integer Mult
By definition, then, xy is rational. 1.33 Rational(xy) Def of Rational: 1.32

1. Rational(x) A Rational(y) — Rational(xy)
Direct Proof



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

Prove: “If x and y are rational, then xy is rational.”

Proof: Suppose that x and y are rational. Then, x = a/b
for some integers a, b, where b#0, and y = ¢/d for some
integers c,d, where d=0.

Multiplying, we get that xy = (ac)/(bd).

Since b and d are both non-zero, so is bd. Furthermore,

ac and bd are integers. By definition, then, xy is rational.
B

vs 34 lines of formal proof



English Proofs

* High-level language let us work more quickly
— should not be necessary to spill out every detail
— reader checks that the writer is not skipping too much

— examples so far

skipping Intro A and Elim A
not stating existence claims (immediately apply Elim 3 to name the object)
not stating that the implication has been proven (“Suppose X... Thus, Y.” says it already)

— (list will grow over time)

* English proof is correct if the reader believes they
could translate it into a formal proof

— the reader is the “compiler” for English proofs




Proof Strategies



Proof Strategies: Counterexamples

To prove —Vx P(x), prove I—P(x):
* Works by de Morgan’s Law: =Vx P(x) = 3x—-P(x)
 All we need to do that is find an x where P(x) is false
* This example is called a counterexample to Vx P(x).

e.g. Prove “Not every prime number is odd”

Proof: 2 is prime but not odd, a counterexample
to the claim that every prime number is odd. B



Proof Strategies: Proof by Contrapositive

If we assume —q and derive —p, then we have proven
g — —p, which is equivalent to proving p — q.

1.1. —q Assumption

1. —.q—>—p Direct Proof Rule
2. p—q Contrapositive: 1



Proof Strategies: Proof by Contrapositive

If we assume —q and derive —p, then we have proven
g — —p, which is equivalent to proving p — q.

We will prove the contrapositive.
Suppose —(. 1.1. —q Assumption
Thus, —p. 1.3. —p

1. —q—>—p Direct Proof Rule
2. p—q Contrapositive: 1



Proof by Contradiction: One way to prove —p

If we assume p and derive F (a contradiction), then
we have proven —p.

1.1. p  Assumption

1.3. F

1. p—F Direct Proof rule
2. —pvF Law of Implication: 1

3. —p Identity: 2



Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we
have proven —p.

We will argue by contradiction.

Suppose p. 1.1. p Assumption
This shows F, a contradiction. 1.3. F _
1. p—F Direct Proof rule
2. —pVvF Law of Implication: 1

Identity: 2

-
J
g~



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd 0dd(x) =3y (x = 2y + 1)

Domain of Discourse

Integers

Prove: “No integer is both even and odd.”
Formally, prove — 3x (Even(x)AOdd(x))




Predicate Definitions

Domain of Discourse

Even and Odd  |Even(x)=3y (x = 2y)

Odd(X) = Hy (x — Zy + 1) IntEgerS

Prove: “No integer is both even and odd.”
Formally, prove — 3x (Even(x)AOdd(x))

Proof: We work by contradiction. Suppose that x is an
integer that is both even and odd.

Then, x=2a for some integer a and x=2b+1 for some
integer b. This means 2a=2b+1 and hence a=b+.

But two integers cannot differ by %, so this is a
contradiction. B



Strategies

* Simple proof strategies already do a lot
— counter examples
— proof by contrapositive
— proof by contradiction

* Later we will cover a specific strategy that applies
to loops and recursion (mathematical induction)



Next Time: Set Theory

Sets are collections of objects called elements.

Write a € B to say that a is an element of set B,
and a & B to say that it is not.

Some simple examples
A= {1}

B=1{1, 3, 2}

Cc={Ld, 1}

D={{17}, 17}

E={1, 2, 7, cat, dog, &, a}




