CSE 311: Foundations of Computing

Lecture 8: Predicate Logic Proofs

MY MATH TEACHER WAS A BIG BELIEVER IN PROOF BY INTIMIDATION.

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Elim
$$\land$$
 $A \land B$
 \therefore A, B

$$A \lor B; \neg A$$
 \therefore $A \lor B; \neg A$
 \therefore $A \lor B, B \lor A$

Modus Ponens
$$A; A \to B$$

$$\therefore B$$

Direct Proof
$$Rule$$

$$A \Rightarrow B$$

$$A \Rightarrow B$$

$$A \Rightarrow B$$

$$A \Rightarrow B$$

Not like other rules

One General Proof Strategy

- Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

Example

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

Last class: Example

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1.
$$(p \rightarrow q) \land (q \rightarrow r)$$
 Assumption
1.2. $p \rightarrow q$ \land Elim: 1.1
1.3. $q \rightarrow r$ \land Elim: 1.1
1.4.1. p Assumption
1.4.2. q MP: 1.2, 1.4.1
1.4.3. r MP: 1.3, 1.4.2
1.4. $p \rightarrow r$ Direct Proof Rule

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof Rule

Inference Rules for Quantifiers: First look

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c|c}
 & \forall x P(x) \\
 & \therefore P(a) \text{ for any } a
\end{array}$$

Let a be arbitrary*"...P(a)
$$\therefore \forall x P(x)$$

$$\Rightarrow P(c) \text{ for some } special** c$$
* in the domain of P

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW name!

Predicate Logic Proofs

- Can use
 - Predicate logic inference rules whole formulas only
 - Predicate logic equivalences (De Morgan's)
 even on subformulas
 - Propositional logic inference rules whole formulas only
 - Propositional logic equivalences
 even on subformulas

$$\begin{array}{c}
P(c) \text{ for some } c \\
\therefore \quad \exists x P(x)
\end{array}$$

$$\begin{array}{c|c}
 & \forall x \ P(x) \\
 & \therefore \ P(a) \ \text{for any } a
\end{array}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

$$5. \quad \forall x P(x) \rightarrow \exists x P(x)$$

The main connective is implication so Direct Proof Rule seems good

$$\begin{array}{c}
 P(c) \text{ for some c} \\
 \vdots \quad \exists x P(x)
\end{array}$$

$$\frac{\forall x P(x)}{\therefore P(a) \text{ for any } a}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.5.
$$\exists x P(x)$$

1.
$$\forall x P(x) \rightarrow \exists x P(x)$$
 Direct Proof Rule

$$\frac{\forall x P(x)}{\therefore P(a) \text{ for any } a}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.5.
$$\exists x P(x)$$

That requires P(c) for some c.

1.
$$\forall x P(x) \rightarrow \exists x P(x)$$
 Direct Proof Rule

$$\frac{\forall x P(x)}{\therefore P(a) \text{ for any } a}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

1.1.
$$\forall x P(x)$$
 Assumption
1.2. Let a be an object.
1.3. $P(a)$ Elim \forall : 1.1

Elim ∀: **1.1**

We could have picked any name or domain expression here.

1.5.
$$\exists x P(x)$$
 Intro \exists : ?

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof Rule

$$\begin{array}{c}
P(c) \text{ for some c} \\
\therefore \quad \exists x P(x)
\end{array}$$

$$\begin{array}{c|c}
 & \forall x \ P(x) \\
 & \therefore \ P(a) \ \text{for any } a
\end{array}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

No holes. Just need to clean up.

1.1.
$$\forall x P(x)$$
 Assumption

1.2. Let α be an object.

1.3. P(a) Elim \forall : **1.1**

1.5.
$$\exists x P(x)$$
 Intro \exists : **1.3**

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof Rule

P(c) for some c
$$\therefore \exists x P(x)$$

$$\frac{\forall x P(x)}{\therefore P(a) \text{ for any } a}$$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$ Assumption

1.2. Let α be an object.

1.3. P(a) Elim \forall : **1.1**

1.4. $\exists x P(x)$ Intro \exists : **1.3**

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof Rule

Working forwards as well as backwards:

In applying "Intro ∃" rule we didn't know what expression we might be able to prove P(c) for, so we worked forwards to figure out what might work.

Predicate Logic Proofs with more content

- In propositional logic we could just write down other propositional logic statements as "givens"
- Here, we also want to be able to use domain knowledge so proofs are about something specific
- Example: Domain of Discourse Integers
- Given the basic properties of arithmetic on integers, define:

 Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$

A Not so Odd Example

Domain of Discourse Integers

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x \; Even(x)$

A Not so Odd Example

Domain of Discourse

Integers

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

$$Odd(x) \equiv \exists y (x = 2 \cdot y + 1)$$

Prove "There is an even number"

Formally: prove $\exists x \; \text{Even}(x)$

1.
$$2 = 2 \cdot 1$$
 Arithmetic

2.
$$\exists y (2 = 2 \cdot y)$$
 Intro $\exists : 1$

4.
$$\exists x \, \text{Even}(x)$$
 Intro $\exists : 3$

A Prime Example

Domain of Discourse Integers

Predicate Definitions

```
Even(x) \equiv \exists y (x = 2 \cdot y)

Odd(x) \equiv \exists y (x = 2 \cdot y + 1)

Prime(x) \equiv "x > 1 and x \neq a \cdot b for

all integers a, b with 1 < a < x"
```

Prove "There is an even prime number"

A Prime Example

Domain of Discourse Integers

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$
Prime(x) $\equiv "x > 1$ and $x \neq a \cdot b$ for
all integers a, b with $1 < a < x$ "

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

- 1. $2 = 2 \cdot 1$
- **2.** Prime(**2**)*

Arithmetic

Property of integers

^{*} Later we will further break down "Prime" using quantifiers to prove statements like this

A Prime Example

Domain of Discourse Integers

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$
Prime(x) $\equiv "x > 1$ and $x \ne a \cdot b$ for
all integers a, b with $1 < a < x$ "

Arithmetic

Prove "There is an even prime number"

2 - 2.1

Formally: prove $\exists x (Even(x) \land Prime(x))$

	2 - 2.1	Antimietic
2.	Prime(2)*	Property of integers
3.	$\exists y (2 = 2 \cdot y)$	Intro ∃: 1
4.	Even(2)	Defn of Even: 3
5.	Even(2) ∧ Prime(2)	Intro ∧: 2, 4

6. $\exists x (Even(x) \land Prime(x))$ Intro $\exists : 5$

^{*} Later we will further break down "Prime" using quantifiers to prove statements like this

Inference Rules for Quantifiers: First look

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c|c}
 & \forall x P(x) \\
 & \therefore P(a) \text{ for any } a
\end{array}$$

Let a be arbitrary*"...P(a)
$$\therefore \forall x P(x)$$

$$\Rightarrow P(c) \text{ for some } special** c$$
* in the domain of P

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW name!

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

- 2. Even(a) \rightarrow Even(a²)
- 3. $\forall x (Even(x) \rightarrow Even(x^2))$

Intro \forall : 1,2

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

2.1 Even(a)

Assumption

- 2. Even(a) \rightarrow Even(a²)
- 3. $\forall x (Even(x) \rightarrow Even(x^2))$

Direct proof rule

Intro \forall : 1,2

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

- 1. Let a be an arbitrary integer
 - **2.1** Even(a)

Assumption

2.2 $\exists y (a = 2y)$

Definition of Even

2.5
$$\exists y (a^2 = 2y)$$

?

2.6 Even(a²)

Definition of Even

2. Even(a) \rightarrow Even(a²)

Direct proof rule

3. $\forall x (Even(x) \rightarrow Even(x^2))$

Intro ∀: 1,2

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

- 1. Let a be an arbitrary integer
 - **2.1** Even(a)

Assumption

2.2 $\exists y (a = 2y)$

Definition of Even

2.5
$$\exists y (a^2 = 2y)$$

Intro∃rule: 🕐

Need $a^2 = 2c$ for some c

2.6 Even(a²)

Definition of Even

2. Even(a) \rightarrow Even(a²)

Direct proof rule

3. $\forall x (Even(x) \rightarrow Even(x^2))$

Intro ∀: 1,2

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

2.2
$$\exists y (a = 2y)$$
 Definition of Even

2.3
$$a = 2b$$
 Elim \exists : b special depends on a

2.5
$$\exists y (a^2 = 2y)$$

2. Even(a)
$$\rightarrow$$
Even(a²)

3.
$$\forall x (Even(x) \rightarrow Even(x^2))$$

Intro
$$\exists$$
 rule: Properties Prope

Direct proof rule

Intro
$$\forall$$
: 1,2

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Used $a^2 = 2c$ for $c=2b^2$

Prove: "The square of every even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

21	Even(a)	Assumption
Z. _	LVCII(a)	Assumption

2.2
$$\exists y (a = 2y)$$
 Definition of Even

2.3
$$a = 2b$$
 Elim \exists : b special depends on a

2.4
$$a^2 = 4b^2 = 2(2b^2)$$
 Algebra

2.5
$$\exists y (a^2 = 2y)$$
 Intro \exists rule

2. Even(a)
$$\rightarrow$$
Even(a²) Direct proof rule

3.
$$\forall x \text{ (Even(x)} \rightarrow \text{Even(x}^2\text{))}$$
 Intro $\forall : 1,2$

Why did we need to say that **b** depends on **a**?

There are extra conditions on using these rules:

"Let a be arbitrary*"...P(a)
$$\therefore \forall x \ P(x)$$

$$\vdots \ P(c) \ \text{for some } special** c$$

$$* \text{ in the domain of P}$$

$$** c \text{ has to be a NEW name.}$$

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim \exists : b special depends on a
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Why did we need to say that **b** depends on **a**?

There are extra conditions on using these rules:

Let a be arbitrary*"...P(a)

∴
$$\forall x P(x)$$

* in the domain of P

Elim∃ $\exists x P(x)$

∴ $P(c)$ for some special** c

** c has to be a NEW name.

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim \exists : b special depends on a
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Can't get rid of a since another name in the same line, b, depends on it!

Why did we need to say that b depends on a?

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- 1. $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim \exists : b special depends on a
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Can't get rid of a since another name in the same line, b, depends on it!

Inference Rules for Quantifiers: Full version

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c|c}
 & \forall x \ P(x) \\
 & \therefore \ P(a) \ \text{for any } a
\end{array}$$

* in the domain of P. No other name in P depends on a

** c is a NEW name. List all dependencies for c.

English Proofs

- We often write proofs in English rather than as fully formal proofs
 - They are more natural to read

- English proofs follow the structure of the corresponding formal proofs
 - Formal proof methods help to understand how proofs really work in English...
 - ... and give clues for how to produce them.