CSE 311: Foundations of Computing

Lecture 8: Predicate Logic Proofs

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Not like other rules

One General Proof Strategy

1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
3. Write the proof beginning with what you figured out for 2 followed by 1.

Example
Prove: $\quad((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$

Last class: Example

Prove: $\quad((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$
1.1. $(p \rightarrow q) \wedge(q \rightarrow r)$ Assumption
1.2. $p \rightarrow q$
^ Elim: 1.1
1.3. $\quad q \rightarrow r$
\wedge Elim: 1.1
1.4.1. p Assumption 1.4.2. $q \quad$ MP: 1.2, 1.4.1 1.4.3. $r \quad$ MP: 1.3, 1.4.2
1.4. $p \rightarrow r$

Direct Proof Rule

1. $((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r) \quad$ Direct Proof Rule

Inference Rules for Quantifiers: First look

* in the domain of P

$\therefore \mathrm{P}(\mathrm{c})$ for some special ${ }^{* *} \mathrm{c}$

$$
\text { ** By special, we mean that } \mathrm{c} \text { is a }
$$ name for a value where $P(c)$ is true. We can't use anything else about that value, so c has to be a NEW name!

Predicate Logic Proofs

- Can use
- Predicate logic inference rules whole formulas only
- Predicate logic equivalences (De Morgan's)
even on subformulas
- Propositional logic inference rules
whole formulas only
- Propositional logic equivalences
even on subformulas

My First Predicate Logic Proof

nntro $\frac{\mathrm{P}(\mathrm{c}) \text { for some } \mathrm{c}}{\therefore \quad \exists \mathrm{xP}(\mathrm{x})}$
Prove $\forall x P(x) \rightarrow \exists x P(x)$
Elim $\forall \frac{\forall x \mathrm{P}(x)}{\therefore \mathrm{P}(\mathrm{a}) \text { for any } \mathrm{a}}$

The main connective is implication
5. $\forall x P(x) \rightarrow \exists x P(x)$ so Direct Proof Rule seems good

My First Predicate Logic Proof

$$
\text { Prove } \forall x P(x) \rightarrow \exists x P(x)
$$

1.1. $\forall x P(x) \quad$ Assumption

We need an \exists we don't have so "intro \exists " rule makes sense
1.5. $\exists x P(x)$

1. $\forall x P(x) \rightarrow \exists x P(x) \quad$ Direct Proof Rule

$$
\text { Prove } \forall x P(x) \rightarrow \exists x P(x)
$$

1.1. $\forall x P(x) \quad$ Assumption
1.5. $\exists x P(x)$

1. $\forall \boldsymbol{x P}(x) \rightarrow \exists \boldsymbol{x} \boldsymbol{P}(x)$ Direct Proof Rule

My First Predicate Logic Proof

Intro $\frac{P(c) \text { for some } c}{\therefore \quad \exists x P(x)}$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1.	$\forall x P(x)$	Assumption
\rightarrow 1.2.	Let a be an object.	
1.3.	$P(a)$	Elim $\forall: 1.1$

We could have picked any name or domain expression here.

$$
\text { 1.5. } \exists x P(x)
$$

1. $\forall \boldsymbol{x} \boldsymbol{P}(x) \rightarrow \exists \boldsymbol{x} \boldsymbol{P}(x)$ Direct Proof Rule

My First Predicate Logic Proof

$\operatorname{mintro~} 3^{\frac{P(c) \text { for some } c}{}}$

$$
\text { Prove } \forall x P(x) \rightarrow \exists x P(x)
$$

No holes. Just need to clean up.
$\begin{array}{lll}\text { 1.1. } & \forall x P(x) & \text { Assumption } \\ \text { 1.2. } & \text { Let } a \text { be an object. } & \\ \text { 1.3. } & P(a) & \text { Elim } \forall: 1.1\end{array}$
1.5. $\exists x P(x) \quad$ Intro $\exists: 1.3$

1. $\forall x P(x) \rightarrow \exists x P(x) \quad$ Direct Proof Rule

My First Predicate Logic Proof

$\operatorname{mintro~} 3^{\frac{P(c) \text { for some } c}{}}$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$
1.2. Let a be an object.
1.3. $\quad P(a)$
1.4. $\exists x P(x)$

Assumption
Elim $\forall: 1.1$
Intro \exists : 1.3

1. $\forall x P(x) \rightarrow \exists x P(x) \quad$ Direct Proof Rule

Working forwards as well as backwards:
In applying "Intro \exists " rule we didn’t know what expression we might be able to prove $\mathrm{P}(\mathrm{c})$ for, so we worked forwards to figure out what might work.

Predicate Logic Proofs with more content

- In propositional logic we could just write down other propositional logic statements as "givens"
- Here, we also want to be able to use domain knowledge so proofs are about something specific
- Example:

Domain of Discourse
Integers

- Given the basic properties of arithmetic on integers, define:

$$
\begin{array}{|l}
\hline \text { Predicate Definitions } \\
\hline \operatorname{Even}(x) \equiv \exists y(x=2 \cdot y) \\
\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1) \\
\hline
\end{array}
$$

A Not so Odd Example

Domain of Discourse
Integers

Predicate Definitions
Even $(x) \equiv \exists y(x=2 \cdot y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1)$

Prove "There is an even number"
Formally: prove $\exists x$ Even (x)

A Not so Odd Example

Domain of Discourse
Integers

Predicate Definitions
$\operatorname{Even}(x) \equiv \exists y(x=2 \cdot y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1)$

Prove "There is an even number"
Formally: prove $\exists x$ Even (x)

1.	$\mathbf{2 = 2 \cdot 1}$	Arithmetic
2.	$\exists y(\mathbf{2}=\mathbf{2} \cdot \mathrm{y})$	Intro $\exists: \mathbf{1}$
3.	$\operatorname{Even}(\mathbf{2})$	Definition of Even: $\mathbf{2}$
4.	$\exists x \operatorname{Even}(\mathrm{x})$	Intro $\exists: 3$

A Prime Example

Domain of Discourse
Integers

$$
\begin{array}{|l|}
\hline \text { Predicate Definitions } \\
\hline \text { Even }(x) \equiv \exists y(x=2 \cdot y) \\
\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1) \\
\operatorname{Prime}(x) \equiv \begin{array}{r}
\text { " } x>1 \text { and } x \neq a \cdot b \text { for } \\
\text { all integers } a, b \text { with } 1<a<x " \\
\hline
\end{array} \\
\hline
\end{array}
$$

Prove "There is an even prime number"

A Prime Example

Predicate Definitions
$\operatorname{Even}(x) \equiv \exists y(x=2 \cdot y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1)$
Prime $(x) \equiv " x>1$ and $x \neq a \cdot b$ for all integers a, b with $1<a<x^{\prime \prime}$

Prove "There is an even prime number"
Formally: prove $\exists x(E v e n(x) \wedge \operatorname{Prime}(x))$

1. $2=2 \cdot 1$
2. Prime(2)*

Arithmetic
Property of integers

A Prime Example

Predicate Definitions

$$
\begin{aligned}
& \begin{aligned}
\operatorname{Even}(x) \equiv \exists y(x=2 \cdot y) \\
\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1)
\end{aligned} \\
& \operatorname{Prime}(x) \equiv \text { "x>1} \begin{array}{l}
\text { and } x \neq a \cdot b \text { for } \\
\text { all integers } a, b \text { with } 1<a<x "
\end{array} \\
& \hline
\end{aligned}
$$

Prove "There is an even prime number"
Formally: prove $\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$

1. $2=2 \cdot 1$
2. Prime (2)*
3. $\exists y(2=2 \cdot y)$
4. Even(2)
5. Even(2) \wedge Prime(2)
6. $\quad \exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$

Arithmetic
Property of integers
Intro \exists : 1
Defn of Even: 3
Intro ^: 2, 4
Intro \exists : 5

Inference Rules for Quantifiers: First look

* in the domain of P

$\therefore \mathrm{P}(\mathrm{c})$ for some special ${ }^{* *} \mathrm{c}$

$$
\text { ** By special, we mean that } \mathrm{c} \text { is a }
$$ name for a value where $P(c)$ is true. We can't use anything else about that value, so c has to be a NEW name!

Even and Odd

$$
\begin{aligned}
& \text { Even }(x) \equiv \exists y \quad(x=2 y) \\
& \text { Odd }(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Intro \forall "Let a be arbitrary*"...P(a) slim ヨ $\exists \mathrm{P}$ (x) $\therefore \quad \forall \mathrm{xP}(\mathrm{x}) \quad \therefore \mathrm{P}(\mathrm{c})$ for some special** c
Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1)
\end{aligned}
$$

Domain: Integers

Intro \forall "Let a be arbitrary*"...P(a) Elim ヨ $\exists \mathrm{P}$ (x)	$\therefore \quad \forall \mathrm{xP}(\mathrm{x})$	$\therefore \mathrm{P}(\mathrm{c})$ for some special** c

Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2. Even $(\mathbf{a}) \rightarrow$ Even $\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1)
\end{aligned}
$$

Domain: Integers

Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
2.6 Even $\left(a^{2}\right)$
2. Even $(\mathrm{a}) \rightarrow$ Even $\left(\mathrm{a}^{2}\right)$
3. $\forall \mathrm{x}\left(\operatorname{Even}(\mathrm{x}) \rightarrow \operatorname{Even}\left(\mathrm{x}^{2}\right)\right)$

Direct proof rule Intro \forall : 1,2

Even and Odd

$$
\operatorname{Even}(x) \equiv \exists y \quad(x=2 y)
$$

$$
\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)
$$

Domain: Integers
Intro \forall "Let a be arbitrary*"...P(a) $\therefore \quad \forall \mathrm{xP}(\mathrm{x})$

Elim ヨ $\quad \exists \mathrm{x} P(\mathrm{x})$
$\therefore \mathrm{P}(\mathrm{c})$ for some special** c
Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
$2.2 \exists y(a=2 y) \quad$ Definition of Even
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even $\left(a^{2}\right)$
2. Even $(\mathbf{a}) \rightarrow$ Even $\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$
?
Definition of Even
Direct proof rule Intro \forall : 1,2

Even and Odd

$\operatorname{Even}(x) \equiv \exists y \quad(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1)$
Domain: Integers

Intro \forall "Let a be arbitrary*"...P(a) $\therefore \quad \forall \mathrm{xP}(\mathrm{x})$
$\operatorname{Elim} \exists \quad \exists x P(x)$
$\therefore \mathrm{P}(\mathrm{c})$ for some special** c
Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
$2.2 \exists y(a=2 y) \quad$ Definition of Even
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even $\left(\mathbf{a}^{2}\right)$
2. Even $(\mathbf{a}) \rightarrow$ Even $\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$
Intro \exists rule:
Need $\mathrm{a}^{2}=2 \mathrm{c}$ for some c
Definition of Even
Direct proof rule Intro \forall : 1,2

Even and Odd

$\operatorname{Even}(x) \equiv \exists y \quad(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1)$
Domain: Integers

Intro \forall "Let a be arbitrary*"...P(a) $\therefore \quad \forall \mathrm{xP}(\mathrm{x})$
$\operatorname{Elim} \exists \quad \exists x P(x)$
$\therefore \mathrm{P}(\mathrm{c})$ for some special ${ }^{* *} \mathrm{c}$
Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(a=2 y)$
$2.3 \mathrm{a}=2 \mathrm{~b}$
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even $\left(\mathrm{a}^{2}\right)$
2. Even $(\mathrm{a}) \rightarrow$ Even $\left(\mathrm{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Assumption
Definition of Even
Elim \exists : b special depends on a
Intro \exists rule: ? $\quad N_{\text {eed }} a^{2}=2 c$ for some c
Definition of Even
Direct proof rule
Intro \forall : 1,2

Even and Odd

$$
\operatorname{Even}(x) \equiv \exists y \quad(x=2 y)
$$

$$
\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)
$$

Domain: Integers
Intro \forall "Let a be arbitrary*"...P(a)
Elim $\exists \quad \exists x P(x)$
$\therefore \mathrm{P}(\mathrm{c})$ for some special ${ }^{* *} \mathrm{c}$
Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(a=2 y)$
2.3 a $=2 \mathrm{~b}$
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right)$
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even $\left(\mathbf{a}^{2}\right)$
2. Even $(\mathbf{a}) \rightarrow$ Even $\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Assumption
Definition of Even
Elim \exists : b special depends on a
Algebra
Intro \exists rule

$$
\text { Used } a^{2}=2 c \text { for } c=2 b^{2}
$$

Definition of Even
Direct proof rule Intro \forall : 1,2

Why did we need to say that b depends on a?

There are extra conditions on using these rules:

* in the domain of P

$$
\frac{\exists x \mathrm{P}(\mathrm{x})}{\mathrm{Elim} \exists \mathrm{P}(\mathrm{c}) \text { for some special** } \mathrm{c}}
$$

${ }^{* *}$ c has to be a NEW name.

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
BAD "PROOF"

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a}) \quad$ Elim $\forall: 1$
$\begin{array}{ll}\text { 4. } \quad b \geq a & \text { Elim } \exists: b \text { spe } \\ \text { 5. } \forall x(b \geq x) & \text { Intro } \forall: 2,4\end{array}$
4. $\exists y \forall x(y \geq x) \quad$ Intro $\exists: 5$

Why did we need to say that b depends on a?

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
BAD "PROOF"

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a}) \quad$ Elim $\forall: 1$
4. $b \geq a$
5. $\forall x(b \geq x)$
6. $\exists y \forall x(y \geq x) \quad$ Intro $\exists: 5$

Can't get rid of a since another name in the same line, b, depends on it!

Why did we need to say that b depends on a?

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False

> BAD "PROOF"

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a}) \quad$ Elim $\forall: 1$
4. $\mathrm{b} \geq \mathrm{a} \quad$ Elim \exists : b special depends on a

Can't get rid of a since another name in the same line, b, depends on it!

Inference Rules for Quantifiers: Full version

Intro \forall "Let a be arbitrary*"...P(a)

* in the domain of P . No other name in P depends on a

$\therefore P(c)$ for some special** ${ }^{*}$
${ }^{* *}$ c is a NEW name.
List all dependencies for c.

English Proofs

- We often write proofs in English rather than as fully formal proofs
- They are more natural to read
- English proofs follow the structure of the corresponding formal proofs
- Formal proof methods help to understand how proofs really work in English... ... and give clues for how to produce them.

