CSE 311: Foundations of Computing

Lecture 6: More Predicate Logic

Last class

Canonical Forms

- sum-of-products and product-of-sums
- both are useful

Corollaries of construction:

- any function can be formed with just \neg, \vee, \wedge
- actually, just \neg, \vee (De Morgan's laws)
- actually, just A (HW1 Q3 (a-c))

NAND and NOR also have this property

Last class: Predicates

Predicate

- A function that returns a truth value, e.g.,
$\operatorname{Cat}(\mathrm{x})::=$ " x is a cat"
Prime (x) ::= " x is prime"
HasTaken $(\mathrm{x}, \mathrm{y})::=$ "student x has taken course y "
LessThan $(x, y)::=$ " $x<y$ "
$\operatorname{Sum}(x, y, z)::=" x+y=z$ "
GreaterThan5(x) ::= "x > 5"
HasNChars(s, n) ::= "string s has length n "
Predicates can have varying numbers of arguments and input types.

Last class: Domain of Discourse

For ease of use, we define one "type"/"domain" that we work over. This non-empty set of objects is called the "domain of discourse".

For each of the following, what might the domain be?
(1) " x is a cat", " x barks", " x ruined my couch"
(2) " x is prime", " $x=0 ", ~ " x<0 ", ~ " ~ x$ is a power of two"
(3) " x is a pre-req for $z "$

Domain of Discourse

For ease of use, we define one "type"/"domain" that we work over. This set of objects is called the "domain of discourse".

For each of the following, what might the domain be?
(1) " x is a cat", " x barks", " x ruined my couch"
"mammals" or "sentient beings" or "cats and dogs" or ...
(2) " x is prime", " $x=0 ", ~ " x<0 ", ~ " ~ x$ is a power of two"
"numbers" or "integers" or "integers greater than 5" or ...
(3) " x is a pre-req for z "
"courses"

Last Class: Quantifiers

We use quantifiers to talk about collections of objects.
$\forall x P(x)$
$P(x)$ is true for every x in the domain read as "for all x, P of x "
$\exists x P(x)$
There is an x in the domain for which $P(x)$ is true read as "there exists x, P of x "

Last class: Statements with Quantifiers

```
Domain of Discourse
    Positive Integers
```

Predicate Definitions	
$\operatorname{Even}(x)::=$ " x is even"	Greater $(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=$ " $x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=$ " $x+y=z "$

Determine the truth values of each of these statements:
$\exists x \operatorname{Even}(x)$
$\forall x \operatorname{Odd}(x)$
$\forall x(\operatorname{Even}(x) \vee \operatorname{Odd}(x))$
$\exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$
$\forall x$ Greater $(x+1, x)$
$\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$

Statements with Quantifiers

Domain of Discourse
Positive Integers

Predicate Definitions	
$\operatorname{Even}(x)::=$ " x is even"	$\operatorname{Greater}(x, y)::=$ " $x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=$ " $x=y$ "
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=" x+y=z "$

Determine the truth values of each of these statements:
$\exists x$ Even (x)
$\forall x \operatorname{Odd}(x)$
$\forall x(\operatorname{Even}(x) \vee \operatorname{Odd}(x)) \quad \mathbf{T}$
$\exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x)) \quad F$
no integer is both even and odd
$\forall x$ Greater $(x+1, x) \quad$ T adding 1 makes a bigger number
$\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x)) T \quad \operatorname{Even}(2)$ is true and Prime(2) is true

Statements with Quantifiers

```
Domain of Discourse
    Positive Integers
```

Predicate Definitions	
$\operatorname{Even}(x)::=$ " x is even"	Greater $(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=$ " $x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=$ " $x+y=z "$

Translate the following statements to English
$\forall x \exists y$ Greater (y, x)
$\forall x \exists y$ Greater (x, y)
$\forall x \exists y$ (Greater $(\mathrm{y}, \mathrm{x}) \wedge$ Prime $(\mathrm{y}))$
$\forall x(\operatorname{Prime}(x) \rightarrow($ Equal $(x, 2) \vee \operatorname{Odd}(x)))$
$\exists x \exists y(\operatorname{Sum}(x, 2, y) \wedge \operatorname{Prime}(x) \wedge \operatorname{Prime}(y))$

Statements with Quantifiers (Literal Translations)

Domain of Discourse

Positive Integers

Predicate Definitions	
$\operatorname{Even}(x)::=$ " x is even"	Greater $(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=" x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=$ " $x+y=z "$

Translate the following statements to English
$\forall x \exists y$ Greater (y, x)
For every positive integer x, there is a positive integer y, such that $y>x$. $\exists y \forall x$ Greater (y, x)

There is a positive integer y such that, for every pos. int. x, we have $y>x$. $\forall x \exists y$ (Greater $(y, x) \wedge \operatorname{Prime}(y))$

For every positive integer x, there is a pos. int. y such that $y>x$ and y is prime. $\forall x(\operatorname{Prime}(x) \rightarrow($ Equal $(x, 2) \vee \operatorname{Odd}(x)))$

For each positive integer x, if x is prime, then $x=2$ or x is odd.
$\exists x \exists y(\operatorname{Sum}(x, 2, y) \wedge \operatorname{Prime}(x) \wedge \operatorname{Prime}(y))$
There exist positive integers x and y such that $x+2=y$ and x and y are prime.

Statements with Quantifiers (Natural Translations)

Domain of Discourse

Positive Integers

Predicate Definitions	
Even $(x)::=$ " x is even"	Greater $(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=$ " $x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=" x+y=z "$

Translate the following statements to English
$\forall x \exists y$ Greater (y, x)
For every positive integer, there is a larger positive integer.
$\exists y \forall x$ Greater (y, x)
There is a largest positive integer.
$\forall x \exists y$ (Greater $(\mathrm{y}, \mathrm{x}) \wedge$ Prime $(\mathrm{y}))$
For every positive integer, there is a larger number that is prime.
$\forall x(\operatorname{Prime}(x) \rightarrow(E q u a l(x, 2) \vee \operatorname{Odd}(x)))$
Every prime number is either 2 or odd.
$\exists x \exists y(\operatorname{Sum}(x, 2, y) \wedge \operatorname{Prime}(x) \wedge \operatorname{Prime}(y))$
There exist prime numbers that differ by two.

English to Predicate Logic

Domain of Discourse

Mammals

Predicate Definitions
$\operatorname{Cat}(x)::=$ " x is a cat"
$\operatorname{Red}(x)::=" x$ is red"
LikesTofu $(x)::=$ " x likes tofu"

"Red cats like tofu"
"Some red cats don't like tofu"

English to Predicate Logic

Domain of Discourse

Mammals

Predicate Definitions
$\operatorname{Cat}(x)::=$ " x is a cat"
$\operatorname{Red}(x)::=$ " x is red"
LikesTofu $(x)::=$ " x likes tofu"

"Red cats like tofu"

$$
\forall x((\operatorname{Red}(x) \wedge \operatorname{Cat}(x)) \rightarrow \text { LikesTofu(x)) }
$$

"Some red cats don't like tofu"

$$
\exists y((\operatorname{Red}(y) \wedge \operatorname{Cat}(y)) \wedge \neg \operatorname{LikesTofu}(y))
$$

English to Predicate Logic

Domain of Discourse
Mammals

Predicate Definitions
$\operatorname{Cat}(x)::=$ " x is a cat"
$\operatorname{Red}(x)::=" x$ is red"
LikesTofu $(x)::=$ " x likes tofu"

When putting two predicates together like this, we use an "and".
"Red cats like tofu"
When there's no leading
When restricting to a smaller domain in a "for all" we use implication. quantification, it means "for all".
"Some red cats don't like tofu" \leftarrow domain in an "exists" we use \uparrow

Negations of Quantifiers

Predicate Definitions
PurpleFruit $(x)::=$ " x is a purple fruit"

$\left(^{*}\right) \forall x$ PurpleFruit(x) ("All fruits are purple")
What is the negation of (*)?
(a) "there exists a purple fruit"
(b) "there exists a non-purple fruit"
(c) "all fruits are not purple"

Try your intuition! Which one "feels" right?

Key Idea: In every domain, exactly one of a statement and its negation should be true.

Negations of Quantifiers

Predicate Definitions
PurpleFruit $(x)::=$ " x is a purple fruit"

$\left(^{*}\right) \forall x$ PurpleFruit(x) ("All fruits are purple")
What is the negation of (*)?
(a) "there exists a purple fruit"
(b) "there exists a non-purple fruit"
(c) "all fruits are not purple"

Key Idea: In every domain, exactly one of a statement and its negation should be true.

Domain of Discourse
\{plum $\}$

(*), (a)

(b), (c)

Domain of Discourse
\{plum, apple\}
(a), (b)

Negations of Quantifiers

Predicate Definitions
PurpleFruit $(x)::=$ " x is a purple fruit"

$\left(^{*}\right) \forall x$ PurpleFruit(x) ("All fruits are purple")
What is the negation of $(*)$?
(a) "there exists a purple fruit"
(b) "there exists a non-purple fruit"
(c) "all fruits are not purple"

Key Idea: In every domain, exactly one of a statement and its negation should be true.

Domain of Discourse
$\{$ plum $\}$
$(*),(\mathrm{a})$

Domain of Discourse
\{apple $\}$
(b), (c)

Domain of Discourse
\{plum, apple $\}$
$(\mathrm{a}),(\mathrm{b})$

The only choice that ensures exactly one of the statement and its negation is (b).

De Morgan's Laws for Quantifiers

$$
\begin{aligned}
& \neg \forall \mathrm{xP}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \neg \exists \mathrm{xP}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

De Morgan's Laws for Quantifiers

$$
\begin{aligned}
\neg \forall \mathrm{xP}(\mathrm{x}) & \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
\neg \exists \mathrm{x}(\mathrm{x}) & \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

"There is no largest integer"

$$
\begin{aligned}
& \exists \mathrm{x} \forall \mathrm{y}(\mathrm{x} \geq \mathrm{y}) \\
\equiv & \forall \mathrm{x} \neg \forall \mathrm{y}(\mathrm{x} \geq \mathrm{y}) \\
\equiv & \forall \mathrm{x} \exists \mathrm{y} \neg(\mathrm{x} \geq \mathrm{y}) \\
\equiv & \forall \mathrm{x} \exists \mathrm{y}(\mathrm{y}>\mathrm{x})
\end{aligned}
$$

"For every integer, there is a larger integer"

Scope of Quantifiers

$\exists x(P(x) \wedge Q(x)) \quad$ vs. $\quad \exists x P(x) \wedge \exists x Q(x)$

scope of quantifiers

$$
\exists x(P(x) \wedge Q(x)) \quad \text { vs. } \quad \exists x P(x) \wedge \exists x Q(x)
$$

This one asserts P and Q of the same x.

This one asserts P and Q of potentially different x 's.

Scope of Quantifiers

Example: $\quad \operatorname{NotLargest}(x) \equiv \exists y \operatorname{Greater}(\mathrm{y}, \mathrm{x})$

$$
\equiv \exists \mathrm{z} \text { Greater }(\mathrm{z}, \mathrm{x})
$$

truth value:
doesn't depend on y or z "bound variables"
does depend on x "free variable"
quantifiers only act on free variables of the formula they quantify

$$
\forall x(\exists y(\mathrm{P}(\mathrm{x}, \mathrm{y}) \rightarrow \forall \mathrm{x} \mathrm{Q}(\mathrm{y}, \mathrm{x})))
$$

Quantifier "Style"

This isn't "wrong", it's just horrible style.
Don't confuse your reader by using the same variable multiple times...there are a lot of letters...

Nested Quantifiers

- Bound variable names don't matter

$$
\forall x \exists y \mathrm{P}(\mathrm{x}, \mathrm{y}) \equiv \forall \mathrm{a} \exists \mathrm{~b} \mathrm{P}(\mathrm{a}, \mathrm{~b})
$$

- Positions of quantifiers can sometimes change

$$
\forall x(Q(x) \wedge \exists y P(x, y)) \equiv \forall x \exists y(Q(x) \wedge P(x, y))
$$

- But: order is important...

Quantifier Order Can Matter

Domain of Discourse
Integers
OR
$\{1,2,3,4\}$

Predicate Definitions
GreaterEq $(x, y)::=" x \geq y "$

"There is a number greater than or equal to all numbers."

$$
\exists x \forall y \text { GreaterEq(x, y))) }
$$

"Every number has a number greater than or equal to it."

$\forall y \exists x$ GreaterEq(x, y)))

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

Quantification with Two Variables

expression	when true	when false
$\forall \mathrm{x} \forall \mathrm{y} \mathrm{P}(\mathrm{x}, \mathrm{y})$	Every pair is true.	At least one pair is false.
$\exists \mathrm{x} \exists \mathrm{y} \mathrm{P}(\mathrm{x}, \mathrm{y})$	At least one pair is true.	All pairs are false.
$\forall \mathrm{x} \exists \mathrm{y} \mathrm{P}(\mathrm{x}, \mathrm{y})$	We can find a specific y for each x. $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$	Some x doesn't have a corresponding y.
$\exists \mathrm{y} \forall \mathrm{x} \mathrm{P}(\mathrm{x}, \mathrm{y})$	We can find 0 ONE y that works no matter what x is. $\left(\mathrm{x}_{1}, \mathrm{y}\right),\left(\mathrm{x}_{2}, \mathrm{y}\right),\left(\mathrm{x}_{3}, \mathrm{y}\right)$	For any candidate y, there is an x that it doesn't work for.

Logical Inference

- So far we've considered:
- How to understand and express things using propositional and predicate logic
- How to compute using Boolean (propositional) logic
- How to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us infer implied properties from ones that we know
- Equivalence is a small part of this

Applications of Logical Inference

- Software Engineering
- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
- Automated reasoning
- Algorithm design and analysis
- e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
- Express desired outcome as set of constraints
- Automatically apply logic inference to derive solution
- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

An inference rule: Modus Ponens

- If p and $p \rightarrow q$ are both true then q must be true
- Write this rule as

- Given:
- If it is Friday, then you have a 311 class today.
- It is Friday.
- Therefore, by Modus Ponens:
- You have a 311 class today.

My First Proof!

Show that r follows from $p, p \rightarrow q$, and $q \rightarrow r$
1.
2.
3.
4.
5.

My First Proof!

Show that r follows from $p, p \rightarrow q$, and $q \rightarrow r$

1.	p	Given
2.	$\mathrm{p} \rightarrow \mathrm{q}$	Given
3.	$\mathrm{q} \rightarrow \mathrm{r}$	Given
4.	q	MP: 1, 2
5.	r	MP: 3,4

Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$
$\begin{array}{ll}\text { 1. } & p \rightarrow q \\ \text { 2. } & \neg q \\ \text { 3. } & \neg q \rightarrow \neg p \\ \text { 4. } & \neg p\end{array}$

Given
Contrapositive: 1
MP: 2, 3

Inference Rules

- Each inference rule is written as:
...which means that if both A and B are true then you can infer C and $\frac{A, B}{\therefore C, D}$ you can infer D.
- For rule to be correct $(A \wedge B) \rightarrow C$ and $(A \wedge B) \rightarrow D$ must be a tautologies
- Sometimes rules don't need anything to start with. These rules are called axioms:
- e.g. Excluded Middle Axiom

$$
\therefore p \vee \neg p
$$

Simple Propositional Inference Rules

Excluded middle plus two inference rules per binary connective, one to eliminate it and one to introduce it

$$
\begin{aligned}
& \frac{p \wedge q}{\therefore p, q} \\
& \frac{p \vee q, \neg p}{\therefore q} \\
& \frac{p, p \rightarrow q}{\therefore q}
\end{aligned}
$$

$$
p, q
$$

$$
\therefore p \wedge q
$$

$$
\therefore p \vee q, q \vee p
$$

Direct Proof Rule
Not like other rules

Show that r follows from $p, p \rightarrow q$ and $(p \wedge q) \rightarrow r$

How To Start:

We have givens, find the ones that go
together and use them. Now, treat new
 things as givens, and repeat.

Proofs

Show that r follows from $p, p \rightarrow q$, and $p \wedge q \rightarrow r$

Two visuals of the same proof. We will use the top one, but if the bottom one helps you think about it, that's great!

1. p
2. $p \rightarrow q$
3. q
4. $p \wedge q$
5. $p \wedge q \rightarrow r$
6. r

Given
Given
MP: 1, 2
Intro ^: 1, 3
Given
MP: 4, 5

$p \wedge q \rightarrow r$ MP

Important: Applications of Inference Rules

- You can use equivalences to make substitutions of any sub-formula.
- Inference rules only can be applied to whole formulas (not correct otherwise).

$$
\begin{array}{ll}
\text { e.g. 1. } p \rightarrow q & \text { given } \\
\text { 2. }(p \vee r) \rightarrow q & \text { intro } \vee \text { from } 1 .
\end{array}
$$

Does not follow! e.g . p=F, q=F, r=T

