CSE 311: Foundations of Computing

Lecture 5: DNF, CNF and Predicate Logic

Homework #1

* HW1 due tonight by 11pm

— submit your solution via GradeScope
— contact staff (cse311-staff@cs) if problems

 New content in section tomorrow (and future)

« HW2 out tomorrow
— due next Wednesday

1-bit Binary Adder

W >

o

(Cour)

0 + 0 = 0 (with Coy; = O)
0 + 1 = 1 (with Coy; = O)
1 + 0 = 1 (with Cyy; = 0)
1 + 1 = O (with Cyyy = 1)

1-bit Binary Adder

A 0 + 0 = 0 (with Cyyr = 0)
+B 0 + 1 =1 (with Cyyr = 0)
S 1+ 0=1(with Cy;r =0)
(Cour) 1+1=0(withCy,;;=1)

Idea: To chain these together, let's add a carry-in

1-bit Binary Adder

O+ 0 =0 (with Cyyr =0)
0+ 1=1(with Cyy; = 0)
1+ 0 =1 (with Cy,;;=0)
(Cour) 1+ 1 =0 (with Cy ;= 1)

W >

o

Idea: These are chained together, with a carry-in

COUT CIN

(G AVAYAVAYA

W >

A[lA[JA|A[A
B|IB||B|B|B

O O (.
= = = e

o

SIIS|IS||S]S

Ol R |o
= O = 0

(Cour)

1-bit Binary Adder

* |nputs: A, B, Carry-in
* Qutputs: Sum, Carry-out

A B cIN cOUT S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

COUTCIN
AVA
AllAIAlA]A
B|B|IB|B|B
s|slis|s]s

Cour

1-bit Binary Adder

* |nputs: A, B, Carry-in
* Qutputs: Sum, Carry-out

A’*B’'*Cp
A’ * B.CIN’

S=A*B'*C\+A *B*C, +

A.B’.CIN’ A.B’.CIN’+A.B.CIN

A | B | e | Cou ﬂ
0 0 0 0

I I S
1 0 1 1
1 1 0 1 “

A*B*C,

1-bit Binary Adder

o : -1 Cour Cin
Inputs: A, B, Carry-in aVavaVa¥as
* Qutputs: Sum, Carry-out Allallallalla
B|B|/IB|[B|B
siisiisls|s

COUT=A’.B.C|N+A.B’.C|N+
A<B+Cy +A*B*Cp

S=A"*B'*C\+A’*B*Cy +A*B'*Cy'+A*B-Cy

1-bit Binary Adder

* Inputs: A, B, Carry-in Cour
PULS: A, B, Larry AYAVAYA
* Qutputs: Sum, Carry-out Allallallalla
BB B|B]|B
SIIS|ISIS]|S
A B Cn | Cour | S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 ! | S=A*B+Cy+A *BeCy +A*B+C, +A*B*Cy
0 1 1 1 0
1 0 0 0 1 | Cor=A"*BeCy+AB'*Cy+A*B-Cy +A*B-Cy
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions
— e.g., full adder’s carry-out function

Cout

AABCn+AB Cin+ ABCin"+ ABCin

A'BCin + AB'Cin + ABCin” +|{ABCin + ABCin

ABCin + ABCin + AB'Cin + ABCin” + ABCin
(A+A)BCin + AB'Cin + ABCin" + ABCin
(1)BCin + AB'Cin + ABCin” + ABCin

B Cin
B Cin
B Cin
B Cin
B Cin
B Cin
B Cin

+

+ + + + + +

AB Cin + ABCin” +|ABCin + ABCin
AB'Cin + ABCin + ABCin” + ABCin
A(B +B)Cin + ABCin®" + ABCin
A(1)Cin + ABCin” + ABCin

ACin + AB (Cin"+ Cin)

ACin + AB(1) _
ACih + AB adding extra terms

creates new factoring
opportunities

A 2-bit Ripple-Carry Adder

A B Ao By A, By Ay B
| T T N A |
0 —> Cin Cout —> Cin Cout —> Cin Cout o
! ! !
o Sum, Sum, Sum,

Uses the fact that
Sum Sum = A’eB’eC,y + A’eBeC,’ + AeB’¢C, + AeBsC,y
is equivalent to Sum = (A & B) @ C,,

Mapping Truth Tables to Logic Gates

Given a truth table: A B C|F
1. Write the Boolean expression 8 8 (1) 8
2. Minimize the Boolean expression 0o 1 ol
3. Draw as gates 0o 1 111
4. Map to available gates 1 0 010
® 1 0 1]1
1 1 010
F =ABC+ABC+AB’'C+ABC 1 1 111
@l = AB(C'+C)+AC(B’+B)
= AB+AC
N NotAD—+
o) © "=
; DF ; }DF
AD—] ’ D*_}
- =

CEo—

Canonical Forms

* Truth table is the unique sighature of a Boolean
Function

* The same truth table can have many gate realizations
— We've seen this already
— Depends on how good we are at Boolean simplification

e Canonical forms
— Standard forms for a Boolean expression
— We all come up with the same expression

Sum-of-Products Canonical Form

* AKA Disjunctive Normal Form (DNF)
 AKA Minterm Expansion ©

Add the minterms together

F= AB'C + ABC + AB'C + ABC" + ABC’

Read T rows off Convert to
truth table Boolean Algebra

= 001 == A'B’C

= 011 = A'BC

e 10 =———p AB’C

e 110 = ABC’

R|lRr|Rr|Rr|O|lO|lOo|lO]| D

Rr|lr|]lO|lO|lR|R,R|O|lO] @

Rr|lOoO|lRr|lO|lR,|O|lRL|O]1OAO

RlRr|lRr|O|lRr|[OlR|O] =M

e 11] e ABC

Sum-of-Products Canonical Form

Product term (or minterm)
— ANDed product of literals - input combination for which output is true
— each variable appears exactly once, true or inverted (but not both)

A B C | minterms _ _
0 0 o0 |ABC F in canonical form:
0 0 1 |ABC F(A, B,C) =ABC+ ABC + AB'C + ABC' + ABC
0 1 0 |ABC _ N
0 1 1 | ABC canonical form = minimal form
1 0 0 |ABC F(A, B,C) = ABC+ ABC + AB'C + ABC + ABC’
1 0 1 | ABC = (AB' + AB + AB’' + AB)C + ABC'
1 1 0 |ABC = ((A" + A)(B’ + B))C + ABC'
1 1 1 |ABC = C+ ABC

= ABC' + C

=AB + C

Product-of-Sums Canonical Form

 AKA Conjunctive Normal Form (CNF)
« AKA Maxterm Expansion @

Multiply the maxterms together
F=

® @ ®

Read F rows off Negate all Convert to
truth table bits Boolean Algebra

b
b
b

R|lRr|Rr|Rr|O|lO|lOo|lO]| D
Rr|lr|]lO|lO|lR|R,R|O|lO] @

Rr|lOoO|lRr|lO|lR,|O|lRL|O]1OAO

R lRr|lRr|lO|lRr|OlR|O] =M

Product-of-Sums Canonical Form

 AKA Conjunctive Normal Form (CNF)
« AKA Maxterm Expansion @

Multiply the maxterms together
F=(A+B+C)(A+B +C)(A’+B+C)

® @ ®

Read F rows off Negate all Convert to
truth table bits Boolean Algebra

= 000 = 11]=—> A+B+C

— 010 = 101=—>A+B' +C £ F

e 100 =P 01 1=——p A’ + B + C

R|lRr|Rr|Rr|O|lO|lOo|lO]| D
Rr|lr|]lO|lO|lR|R,R|O|lO] @

Rr|lOoO|lRr|lO|lR,|O|lRL|O]1OAO

R lRr|lRr|lO|lRr|OlR|O] =M

Product-of-Sums: Why does this procedure work?

Useful Facts:
 We know (F’) =F
« We know how to get a minterm expansion for F’

F'= AB'C' + ABC' + AB'CC

R|lRr|Rr|Rr|O|lO|lOo|lO]| D
Rr|l—r|O|lO|lrRr|—Rr|O|lOI @

Rr|lOoO|lRr|lO|lR,|O|lRL|O]1OAO

R lRr|lRr|lO|lRr|OlR|O] =M

Product-of-Sums: Why does this procedure work?

Useful Facts:
 We know (F’) =F
« We know how to get a minterm expansion for F’

F'=AB'C' + ABC' + AB'C’
Taking the complement of both sides...
(F) = (AB'C' + ABC' + AB'C')’
And using DeMorgan/Comp....

F — (AIBICI)I (AIBCI)I (ABICI)I

R|lRr|Rr|Rr|O|lO|lOo|lO]| D
Rr|l—r|O|lO|lrRr|—Rr|O|lOI @

Rr|lOoO|lRr|lO|lR,|O|lRL|O]1OAO

R lRr|lRr|lO|lRr|OlR|O] =M

F=(A+B+C)(A+B +C)(A’+B+C(C)

Product-of-Sums Canonical Form

Sum term (or maxterm)
— ORed sum of literals - input combination for which output is false
— each variable appears exactly once, true or inverted (but not both)

A B C | maxterms F in canonical form:

0 0 0 |A+B+C F(A,B,C) =(A+B+C)(A+B"+C)(A+ B+ C)
0 0 1 |A+B+C

0O 1 0 |A+B+C canonical form = minimal form

0 1 1 |A+B+C F(A,B,C) =(A+B+C)(A+B +C)(A+B+C)
1 0 0 |A+B+C =(A+B+C)(A+B +C)

1 0 1 |A+B+C (A+B+C)(A+B+ 0O

1 1 0 |A+B+C =(A+C)(B+C)

1 1 1 |A+B+C

Predicate Logic

* Propositional Logic

“If you take the high road and | take the low road then I'll
arrive in Scotland before you.”

* Predicate Logic
“All positive integers x, y, and z satisfy x3 + y3 # z5.

”

Predicate Logic

* Propositional Logic

— Allows us to analyze complex propositions in
terms of their simpler constituent parts (a.k.a.
atomic propositions) joined by connectives

* Predicate Logic

— Lets us analyze them at a deeper level by
expressing how those propositions depend on
the objects they are talking about

Predicate Logic

Adds two key notions to propositional logic
— Predicates

— Quantifiers

I’)

QUANTIFIEE

Predicates

Predicate
— A function that returns a truth value, e.g.,

Cat(x) ::= “xis a cat”

Prime(x) ::= “x is prime”

HasTaken(x, y) ::= “student x has taken course y”
LessThan(x, y) ::= “x<y”

Sum(x, vy, z) :=“x+y=2"

GreaterThan5(x) ::= “x > 5"

HasNChars(s, n) ::= “string s has length n”

Predicates can have varying numbers of arguments
and input types.

Domain of Discourse

For ease of use, we define one “type”/“domain” that we
work over. This set of objects is called the “domain of
discourse”.

For each of the following, what might the domain be?
(1) “x is a cat”, “x barks”, “x ruined my couch”

(2) “x is prime”, “x =07, “x< 07, “x is a power of two”

(3) “student x has taken course y” “x is a pre-req for z”

Domain of Discourse

For ease of use, we define one “type”/“domain” that we
work over. This non-empty set of objects is called the
“domain of discourse”.

For each of the following, what might the domain be?

(1) “x is a cat”, “x barks”, “x ruined my couch”
“mammals” or “sentient beings” or “cats and dogs” or ...

(2) “x is prime”, “x =07, “x < 07, “x is a power of two”
“numbers” or “integers” or “integers greater than 5” or ...

(3) “student x has taken course y” “x is a pre-req for z”

“students and courses” or “university entities” or ...

Quantifiers

We use quantifiers to talk about collections of objects.

Vx P(x) I @)

P(x) is true for every x in the domain QUANTIFIEN
read as “for all x, P of x”

Ix P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”): Vx P(x)
P(x) is true for every x in the domain

read as “for all x, P of x”

Examples: Are these true?

e Vx 0dd(x)

VX LessThan4(x)

Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”): Vx P(x)

P(x) is true for every x in the domain
read as “for all x, P of x”

Examp|es: Are these true? It depends on the domain. For example:

{1, 3,-1, -27} Integers Odd Integers

e Vx 0dd(x)

True False True

* VX LessThan4(x) True False False

Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”): dx P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Examples: Arethese true?

e dx Odd(x)

e dx LessThan4(x)

Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”): dx P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Examp|es: Are these true? It depends on the domain. For example:

Positive
{1,3,-1,-27} Integers Multiples of 5
e dx Odd(x)
True True True

e dx LessThan4(x) True True False

Statements with Quantifiers

Just like with propositional logic, we need to define variables (this
time predicates) before we do anything else. We must also now
define a domain of discourse before doing anything else.

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even” Greater(x, y) ::= “x>y”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x +y =2"

Statements with Quantifiers

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>y”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x +y =2"

Determine the truth values of each of these statements:

dx Even(x)

Vx Odd(x)

Vx (Even(x) v Odd(x))
dx (Even(x) A Odd(x))
Vx Greater(x+1, x)

dx (Even(x) A Prime(x))

Statements with Quantifiers

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>y”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x +y =2"

Determine the truth values of each of these statements:

dx Even(x) T eg.2,4,6,..

Vx Odd(x) F eg246,..

Vx (Even(x) v Odd(x)) T every integer is either even or odd

dx (Even(x) A Odd(x)) F nointeger is both even and odd

Vx Greater(x+1, x) T adding 1 makes a bigger number
T

dx (Even(x) A Prime(x)) Even(2) is true and Prime(2) is true

Statements with Quantifiers

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>y”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x +y =2"

Translate the following statements to English

Vx dy Greater(y, x)

Vx dy Greater(x, y)

Vx 3y (Greater(y, x) A Prime(y))

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

dx Ay (Sum(x, 2, y) A Prime(x) A Prime(y))

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>y”
| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x +y =2"

Translate the following statements to English

Vx dy Greater(y, x)
For every positive integer X, there is a positive integer y, such thaty > x.
Vx dy Greater(x, y)
For every positive integer X, there is a positive integer y, such that x > y.
Vx 3y (Greater(y, x) A Prime(y))
For every positive integer x, there is a pos. int. y such thaty > x and y is prime.
Vx (Prime(x) — (Equal(x, 2) v Odd(x)))
For each positive integer x, if x is prime, then x = 2 or x is odd.
dx Ay (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist positive integers x and y such that x + 2 =y and x and y are prime.

Statements with Quantifiers (Natural Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even” Greater(x, y) ::= “x>y”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x +y =2"

Translate the following statements to English

Vx dy Greater(y, x)
There is no greatest positive integer.
Vx dy Greater(x, y)

There is no least positive integer.

Vx 3y (Greater(y, x) A Prime(y))

For every positive integer there is a larger number that is prime.

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

Every prime number is either 2 or odd.

dx Ay (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist prime numbers that differ by two.”

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “xis a cat”

Mammals | Red(x) ::= “xis red”
\LikesTofu(x) ::= “x likes tofu”

“Red cats like tofu”

“‘Some red cats don’t like tofu”

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “xis a cat”

Mammals | Red(x) ::= “xis red”
\LikesTofu(x) ::= “x likes tofu”

“Red cats like tofu”

VX ((Red(x) A Cat(x)) — LikesTofu(x))

“‘Some red cats don’t like tofu”

1y ((Red(y) A Cat(y)) A —LikesTofu(y))

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “xis a cat”

| Mammals) Red(x) ::= “xis red”
\LikesTofu(x) ::= “x likes tofu”

—

When putting two predicates together like this, we
‘ use an “and”.

When restricting to a smaller
domain in a “for all” we use

“Red cats like tofu” «

implication.
When there’s no leading
quantification, it means “for all”.
—4 When restricting to a smaller
“Some red cats don’t like tofu” €— domain in an “exists” we use
and.

“‘Some” means “there exists”.

Negations of Quantifiers

(*) Vx

Predicate Definitions

| PurpleFruit(x) ::= “xis a purple fruit”

PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?

(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition! Which one “feels” right?

Key Idea: In every domain, exactly one of a
statement and its negation should be true.

Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit”

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Key Idea: In every domain, exactly one of a
statement and its negation should be true.

Domain of Discourse Domain of Discourse Domain of Discourse
{plum} J L {apple} __1plum, apple}

The only choice that ensures exactly one of the statement and its negation is (b).

De Morgan’s Laws for Quantifiers

—Vx P(x) = 3x — P(x)
— dx P(x) = Vx = P(x)

De Morgan’s Laws for Quantifiers

—Vx P(x) = 3x — P(x)
— Ix P(x) = Vx = P(x)

“There is no largest integer”

—dxVy (x2y)
= VXxaVy (x2y)
Vx dy—=(x2y)
= Vx dy (x<y)

“For every integer there is a larger integer”

Scope of Quantifiers

Ix (P(x) AQ(x)) vs. dxP(x) A dx Q(x)

Scope of Quantifiers

Ix (P(x) AQ(x)) vs. dxP(x) A dx Q(x)

This one asserts P This one asserts P and Q
and Q of the same x. of potentially different x’s.

Scope of Quantifiers

Example: Notlargest(x) = 3y Greater (y, x)
= 1z Greater (z, x)

truth value:

doesn’'t depend on y or Z “bound variables”
does depend on X “free variable”

guantifiers only act on free variables of the formula
they quantify

vV x (3y (P(xy) = V xQly, x)))

Quantifier “Style”

Vx(3y (P(x,y) = V x Q(y, x)))

This isn’t “wrong’, it’'s just horrible style.
Don’t confuse your reader by using the same
variable multiple times...there are a lot of letters...

