CSE 311: Foundations of Computing

Lecture 3: Digital Circuits & Equivalence

AND OVER THERE WE HAVE THE LABYRINTH GUARDS.
ONE ALWAYS LIES, ONE ALWAYS TELLS THE TRUTH, AND
ONE STABS PEOPLE WHO ASK TRICKY QUESTIONS.

Homework #1

* Posted yesterday. Due Wednesday

 Submit your solution via GradeScope

* You should receive an email invitation tonight

— If you don’t receive one, send e-mail to
cse3l1-staff@cs.washington.edu

* Grading policy on web site updated:
— solutions must be legible
— submissions requiring work to interpret will lose points
— useful tips for typesetting solutions on web site

CSE 311: Foundations of Computingl Home Calendar Assignments Lectures Sections Message Board

Home
Syllabus
Grading
Exams

Canvas

Grading Policies

Our determinations of the correctness of each answer will be made based on the intention of the problem, as long as the staff
believes that the intention was clear. We will not listen to legalistic arguments about why poor solutions should be considered
correct.

We will not debate the amount of points deducted for mistakes. Those are entirely at the descretion of the course staff.

Grading Guidelines
Legibility is critical

You may lose points for solutions that are not legible. Whenever the grader has to spend a noticeable amount of time trying to
determine what your submission actually says, they will deduct points.

You can eliminate that possibility by typsetting your solution. (See below for suggestions on how to do so.)

Clarity is important

. (more here) .

Typesetting Suggestions

LaTeX is the standard tool for typesetting mathematical materials. While it takes some time to learn, it will likely pay for itself in
the long run. LaTeX math notation is also supported in some places outside of LaTeX documents, such as on the Piazza message
board.

A former CSE 311 instructor, Adam Blank, has provided these documents, which may be useful to you:

o Atemplate LaTeX file to use for CSE 311 homework assigments.
o Atutorial on LaTeX, including specific information on how to use the template.

Note that LaTeX does not need to be installed on your computer. You can use it in a web browser at the Overleaf web site.

While LaTeX is not required for your assignments in CSE 311, it is encouraged. However, LaTeX is not the best tool for every job. In
particular, for drawing circuits, finite state machines, and other diagrams, it is often preferable to draw them by hand, take a
picture, and include it in your LaTeX document using the \includegraphics{FILE NAME} command.

Last class: Logical Equivalence A=B

A = B is an assertion that two propositions A and B

always have the same truth values.
tautlology

A =B and (A > I§) =T have the same meaning.

PAG=qQ AP
pP|lad| pPrq|lgrp| (PAqg)gAap)
T T T T T
T|F F F T
FIT F F T
F|F F F T
pPAGEGN P

When p=T and q=F, p A q s false, but q V p is true

Last class: De Morgan’s Laws

De Morgan’s Laws

-(pAq)=-p Vg
-(pVq)=-pA-q

Last class: Equivalences Related to Implication

Law of Implication

p > q = pV(q
Contrapositive

p—q = q — p
Biconditional

poq = (p—>q)A(Q—p)

Last class: Properties of Logical Connectives

Identity * Associative

-pAT=p - (pvq@Vvr=pv(qVvr)

- pVF=p -~ (PADAT=pA(QAT)
Domination * Distributive

- pVT=T -pA@Vr)=(@AqV(pAT)
— pAF=F -pv@Ar)=(@VgA(pVr)
Idempotent * Absorption

- pVp=Ep -pV(PAQ =D

-~ pApP=Ep -pA(PVQ =Dp
Commutative Negation

—pVqg=qVp —pVap =T

—PANGQ=EqAD —pAp=F

One more easy equivalence

Double Negation

p = ——p

Last class: Digital Circuits

Computing With Logic
—T corresponds to 1 or “high” voltage
—F corresponds to O or “low’ voltage

Gates
— Take inputs and produce outputs (functions)
— Several kinds of gates

— Correspond to propositional connectives (most
of them)

Last class: AND, OR, NOT Gates

p q ouT
AND Gate 11| 1
p__ | 1 0 0
AND ouT
9— 0| 1 0
0| 0 0
OR Gate L I
1 | 1 1
p
qUT 1 0 1
0| 1 1
0| 0 0
NOT Gate p | out

' 1 0
p b. ouT
0 1

Combinational Logic Circuits

p—juoi>s o)
(D)oo

Values get sent along wires connecting gates

Combinational Logic Circuits

p—juoi>s o)
(D)oo

Values get sent along wires connecting gates

pA(~gA(rVs))

Combinational Logic Circuits

P

g

AND

AND

Wires can send one value to multiple gates!

Combinational Logic Circuits

P

g

AND

AND

Wires can send one value to multiple gates!

(PpA=g)V (=g AT)

Other Useful Gates

NAND S
~(p A Q) o L e

NOR BRI
=(p Vv q) a AT
XOR o Y,
p®Dq QSf)DSOUt
XNOR

p o g > D o

P q out
0O O 1
0 1 1
1 0 1
1 1 0
P q out
0O O 1
0 1 0
1 0 |0
1 1 0
p g |out
O 0 |0
0 1 1
1 0 1
1 1 0
p g |out
0 O 1
0 1 0
1 0 |0
1 1 1

Understanding logic and circuits

When do two logic formulas mean the same thing?
When do two circuits compute the same function?

What logical properties can we infer from other
ones?

Basic rules of reasoning and logic

* Allow manipulation of logical formulas
— Simplification
— Testing for equivalence
* Applications
— Query optimization
— Search optimization and caching
— Artificial Intelligence
— Program verification

Computing Equivalence

Given two propositions, can we write an algorithm to
determine if they are equivalent?

What is the runtime of our algorithm?

Computing Equivalence

Given two propositions, can we write an algorithm to
determine if they are equivalent?

Yes! Generate the truth tables for both propositions and check
if they are the same for every entry.

What is the runtime of our algorithm?

Every atomic proposition has two possibilities (T, F). If there are
n atomic propositions, there are 2™ rows in the truth table.

Another approach: Logical Proofs

To show A is equivalent to B

— Apply a series of logical equivalences to
sub-expressions to convert Ato B

To show A is a tautology

— Apply a series of logical equivalences to
sub-expressions to convert Ato T

Another approach: Logical Proofs

To show A is equivalent to B

— Apply a series of logical equivalences to
sub-expressions to convert Ato B

Example:
Let Abe “pV (p Ap)”, and B be “p”.
Our general proof looks like:

pV(pAp)=()
=p

Another approach: Logical Proofs

* Identity Associative De Morgan’s Laws
- pAT=p - (pvgevr=pv(qVvr) —(PAQ) =—DV—q
- pVF=p - @A AT=pA(qAT) —(pvqg)=—pAr—q
* Domination * Distributive o
Law of Implication
-pVT=T -pA@@Vvr)=@AqQV (pAT) _
- pAF=F -pV@Ar) =@V A(VT) oo = P
Contrapositive
* Ildempotent * Absorption _
“PVPEP —pVA=p Biconditional
-~ PAPED -PAPVA =P peoq=@>9AQ—>D)
 Commutative * Negation
- pVvVqg=qVp —pVap=T Double Negation
—PAQ=qAp —PADP=E p=——p
Example:

Let Abe “pV (p Ap)”, and B be “p”.
Our general proof looks like:

pV(pAp)=()
=p

Logical Proofs

 Identity * Associative De Morgan’s Laws
-pAT=p -(vgevr=pv(qVvr) (PAQ =—DV—q
-pVF=p - @A AT=pA(qAT) —~(pVvq@)=—pA—q
* Domination * Distributive

Law of Implication

-pVT=T -pA@@Vr)=@AqQV(PAT)
- pAF=F -pV@Ar) =@V A(VT) oo = P
Contrapositive
* |dempotent * Absorption _
B B p—>q=—-q—>—p
“PVPEP —pVA=p Biconditional
-~ PAP=P —pPAPVO) =P peoq=@>9AQ—>D)
 Commutative * Negation
-pVvqg=qVp —-pVap=T Double Negation
—PAQ=qAp —PADP=E p=——p
Example:

Let Abe “pV (p Ap)”, and B be “p”.
Our general proof looks like:

pV((pAp)=(pVp) ldempotent
=D ldempotent

Logical Proofs

To show A is a tautology

— Apply a series of logical equivalences to
sub-expressions to convert Ato T

Example:
Let Abe “—pV (pVDp)".
Our general proof looks like:

-pV(pVp) =()

= (
=T

Logical Proofs

* ldentity
-pAT=p
—-pVF=p

* Domination
-pVT=T
—pAF=F

* Ildempotent
- PVpPp=PDP
—PAP=D

* Commutative
- pPVqa=qVp
—PAQ=qAp
Example:

* Associative

- (pvevr=pv(qVr)
- (A AT =pA(qAT)

* Distributive
-pA@@Vr)=@AQV(AT)
-pV@Ar) =@V A(VT)
* Absorption

-pVPAQ =P

-pA(PVY =P
* Negation

- pV—|p=T

—pA-p=

Let Abe “—pV (pVDp)".

Our general proof looks like:

-pV(pVp) =(

= (
=T

De Morgan’s Laws
—(prq)=—PVv—q
—(pvq)=—pA—q

Law of Implication

p—>q=-—-pVvq

Contrapositive

pP—>q =—~-q—>—p

Biconditional

p<q=@P>q9Ar(@q—>p)

Double Negation

p=—-p

Logical Proofs

* ldentity
-pAT=p
—-pVF=p

* Domination

—-pVT=T
—pAF=F
* |dempotent
- PVpPp=PDP
—PAP=D

« Commutative

—pVqa=qVp
—PAGQ=qAp

Example:

¢ Associative

- (pvevr=pv(qVr)
- (A AT =pA(qAT)

¢ Distributive

—-pA(@Vvr)={@Aq@QV(pAT)
-pvV@Ar) =@V A(VT)

* Absorption

-pVPAQ =P

-pA(PpV@ =p
* Negation

- pV—|p=T

—pAp =

Let Abe “—pV (pVDp)".
Our general proof looks like:

De Morgan’s Laws
—(PAq)=—pPVv—q
—(pVvaq)=—pAr—q

Law of Implication

bp—>q=-PpVvq

Contrapositive

p—>q=-—-q—>-p

Biconditional

p<q=@P>q9Ar(@q—>p)
Double Negation
pP=——Dp

) Idempotent

) Commutative
Negation

Prove these propositions are equivalent: Option 1

Prove:p A (P> q)=p AQ
Make a Truth Table and show:

PAPp->q) o@Ag) =T

plqgq| roq (pAP-q) PAq PAP-q) > PArq)
T T T T T T
T|F F F F T
FIT T F F T
F|F T F F T

Prove these propositions are equivalent: Option 2

Prove:p A (p > q)=p AQ

pA(—q)

pAq

* Identity * Associative De Morgan’s Laws
- pAT=p -(pvevr=pvigvr)
-pVF=p -~ (PAQAT=pA(QAT) —'(p/\CI)f—'PV—lCI
« Domination « Distributive —(pva)=—rr—q
—pVT=T —pA(@@Vr)=(@AqQV(pAT) Law of Implication
- pAF=F -pv@Ar)=(@VgA(pVr) p—>q=-pvq
* ldempotent « Absorption Contrapositive
—PVP=Pp -pV(pAgQ =p p—>q=—q—>—p
—pADP=Dp —pA(PpVg =p Biconditional
« Commutative * Negation p<>q=pP>q9)r(@—>Dp)
- pPVqa=qVp —pVp=T Double Negation
—PAG=qAp —pPADP=

p=—-p

Prove these propositions are equivalent: Option 2

Prove:p A (p > q)=p AQ

Law of Implication

pAN(p—->q) =pA(—pVQq)

=(@A-p)V(pAQ)

Distributive
Negation

Commutative
Identity

* Identity * Associative De Morgan’s Laws
-pAT=p - (vgvr=pv(qVvr) PAG)=—pv
-pVF=p - (PAAT=EpA(GAT) “\PAG)=—DPV—q

e Domination

—-pVT=T
—pAF=F

* Idempotent

e Distributive
—-pAQ@@Vr)=@AqQV(pAT)
-pv@Ar)=(@VgA(pVr)

* Absorption

—(Pva)=—pPAr—q
Law of Implication

p—>q=—-pVvq
Contrapositive

- PVp=EpD -pV(pAgQ =p p—>q=—-q—>-p
—pAP=D —pA(pvq) =p BlQQnd!tJQEa]

+ Commutative * Negation peoq=@>q9rQq—>Dp)
-pVq=qVp —pVp=T Double Negation
- PAG=qAD — pA-p=F

p=—-p

Prove this is a Tautology: Option 1

(b AQq)—(qVp)

Make a Truth Table and show:

(pAq) > (qVp) =T

pAq

qVvp

(pAnq) - (qVDp)

T

M- =<

| A || 4R

m | || -

m (-]

I
I
T

Prove this is a Tautology: Option 2

(b AQq)—(qVp)

Use a series of equivalences like so:

(pAq) > (qVp) =

Identity
-pAT=p
—pVF=p
Domination
—-pVT=T
—pAF=F
Idempotent
—pPVp=EPD
—PApP=EDp
Commutative
—pPVqg=EqVp

—PAG=qAp

Il
—

Associative
-(@vgevr=pv(qvr)

- (@ADAT=pA(gAT)
Distributive
-pA@vr)=(@A@QV (AT
-pVv@Ar) =@V A(pVrT)
Absorption

-pVPAQ =D
-pA(pVvg =p

Negation

—pV=ap=T

—pAp=F

Associative
- (vevr=pv(gVvr)

Prove this is a Tautology: Option 2 |-erorr=prann

Distributive

-pA@vr)=(@A@QV (AT
-pVv@Ar) =@V A(pVrT)

(p /\ q) 9 (q \/ p) Absorption

-pvipAgQ =p

-pA(pVvg =p

Negation

—pVap=T

—pAp=F

(pAg) > (@Vp)=-(pAq)V(qVDp) Law of Implication
=(—pV-q)V(qVp) DeMorgan
—pV (—qV(qVp)) Associative

Use a series of equivalences like so:

dentity =-pV ((—lq \ q) \ p) Associative

_ ,’;CEZZ =-pV((@PV(agVq)) Commutative
Pominaton. =(=pVp)V(nqVqg) Associative

—pVT=

— pAF=F =(pV-ap)v(@V-q) Commutative (twice)
'iezsoge;tp = TVT Negation (twice)

- pApP=D = T Domination/Identity
Commutative

- pVqa=qVp

- PAG=qAp

Logical Proofs of Equivalence/Tautology

* Not smaller than truth tables when there are only
a few propositional variables...

 ...but usually much shorter than truth table proofs
when there are many propositional variables

* A big advantage will be that we can extend them
to a more in-depth understanding of logic for

which truth tables don’t apply.

