CSE 311: Foundations of Computing

Lecture 2: More Logic, Equivalence & Digital Circuits

A CON- 7 ¥ e o i I
DADDY, JUNCTIoN? || ConNJUNCTION JuncTion, || HOOKING UP WORDS AND || wi NORMAL FORGET.
WHAT'S YOUR FUNCTION? || PHRASES AND cLAUSES! || LANGUAGE, '

~ | PLease
P : \
- : X
/

t
(
9y
J 3 :ﬁ jm

Last class: Some Connectives & Truth Tables

Negation (not) Conjunction (and)
T = T T T
T F F
F | T
F T F
F F F
Disjunction (or) Exclusive Or
p qa |pvq p | g | pDq
T T T T T F
T F T T F T
F T T F T T
F F F F F F

Last class: Implication

“If it’s raining, then | have my umbrella”

M| M| |-|T

M| - | M- |Q

S |=|m|=]]

P — q

(1) “I have collected all 151 Pokémon if | am a Pokémon master”
(2) “I have collected all 151 Pokémon only if | am a Pokémon master”

These sentences are implications in opposite directions:

P — q

(1) “I have collected all 151 Pokémon if | am a Pokémon master”
(2) “I have collected all 151 Pokémon only if | am a Pokémon master”

These sentences are implications in opposite directions:
(1) “Pokémon masters have all 151 Pokémon”
(2) “People who have 151 Pokémon are Pokémon masters”

So, the implications are:
(1) If1 am a Pokémon master, then | have collected all 151 Pokémon.
(2) If 1 have collected all 151 Pokémon, then | am a Pokémon master.

P — q

Implication:
— p implies q
— whenever p is true g must be true
—if pthen g
—qifp
— p is sufficient for q
—ponlyifq
— q is necessary for p

nm|m|-H ||

nm{H|m|H|a

S |=|m|=|!

Biconditional: p < ¢

e piffq

* pis equivalent to q

* pimplies g and q implies p

* pis necessary and sufficient for q

P q | p<(g

Biconditional: p < ¢

e piffq

* pis equivalent to q

* pimplies g and q implies p

* pis necessary and sufficient for q

P<(q

A4S
M| - 7| H|Q
—I-n-n—l$

Back to Garfield...

p “Garfield has black stripes”
q “Garfield is an orange cat”
r “Garfield likes lasagna”

“Garfield has black stripes if he is an orange cat and likes
lasagna, and he is an orange cat or does not like lasagna”

(pif (g andr)) and (q or (notr))

(p “if" (@A) A(qV =)

Back to Garfield...

p “Garfield has black stripes”
q “Garfield is an orange cat”
r “Garfield likes lasagna”

“Garfield has black stripes if he is an orange cat and likes
lasagna, and he is an orange cat or does not like lasagna”

(pif (g andr)) and (q or (notr))

(p “if" (@A) A(qV =)

(@A) —p)A(qV —r)

Analyzing the Garfield Sentence with a Truth Table

plq|r |-r|qV-r qAT (qATr)—>Dp (gAar)->p)A(qV r)

Analyzing the Garfield Sentence with a Truth Table

p|q|r|or|qVar qAT (qAT)—>p ((@ATr)—>p)A(qV-r)
FIF|F|T| T F T T
FIF|T|F| F F T F
FIT|{F|T T F T T
FIT|T|F T T F F
T|F{F|T| T F T T
T|F|T|F F F T F
T|T|F|T| T F T T
T|T|T]|F T T T T

Converse, Contrapositive

Implication: Contrapositive:
p—q —q —> —p
Converse:
q—op —p —> —q
Consider

p: x is divisible by 2
q: x is divisible by 4

p—q
q—>p

Converse, Contrapositive

Implication:

P—q
Converse:
qa—>p

Consider
p: x is divisible by 2
q: x is divisible by 4

p—q
q—>p

Contrapositive:

Divisible By 2

Not Divisible By 2

Divisible By 4

Not Divisible By 4

Converse, Contrapositive

Implication: Contrapositive:
p—q —q —> —p
Converse:
q—op —p —> —q
Consider

p: x is divisible by 2

g: x is divisible by 4 Divisible By 2 | Not Divisible By 2

p—q L .
Divisible By 4 4,8,12,... Impossible
q—p
Not Divisible By 4 2,6,10,... 1,3,5,...

Converse, Contrapositive

Implication:

P—q
Converse:
qa—>p

Contrapositive:

How do these relate to each other?

P, q9 | p—>q

q—>p

—P

—q

—P = —q

—q — —p

m|(mn|4|H
m|({—A|m|H

Converse, Contrapositive

Implication: Contrapositive:
p—q —q —> —p
Converse:
q—p —p —> —q

An implication and it’s contrapositive
have the same truth value!

P9 (P29 | 9q=>p |—P |—q —P—>—q | —q—>—P

MM |- |-
il
- [||
- (M |-
— (= |[m |

— (M |- |
- ||| -
- [= M|

Tautologies!

Terminology: A compound proposition is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false

pv—p

pop

(P—>q)Ap

Tautologies!

Terminology: A compound proposition is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false
pPYv —pP

This is a tautology. It’s called the “law of the excluded middle”.
If p is true, then p v —p is true. If p is false, then p v —p is true.

pPe®p
This is a contradiction. It's always false no matter what truth
value p takes on.

(P—>q)rp
This is a contingency. When p=T, q=T, (T = T)AT is true.
When p=T, q=F, (T = F)AT is false.

Logical Equivalence

A = B means A and B are identical “strings”:
—PAG=PACQ

— PAQEQAP

Logical Equivalence

A = B means A and B are identical “strings”:
—PAG=pPpA(Q
These are equal, because they are character-for-character identical.
—PAGQFQAP

These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

A = B means A and B have identical truth values:
—PAG=EPAQ

—PAG=qGANP

—bAq@EQVP

Logical Equivalence

A = B means A and B are identical “strings”:
—PAG=pPpA(Q
These are equal, because they are character-for-character identical.
—PAGQFQAP
These are NOT equal, because they are different sequences of

characters. They “mean” the same thing though.

A = B means A and B have identical truth values:
—PAG=PAQ
Two formulas that are equal also are equivalent.
—PAQ=qANrPp
These two formulas have the same truth table!

— PAQEQVP
When p=T and q=F, p A q is false, but p vV q is true!

A< B vs. A=B

A = B Is an assertion over all possible truth values
that A and B always have the same truth values.

A <> B is a proposition that may be true or false

depending on the truth values of the variables in A
and B.

A =B and (A <> B) =T have the same meaning.

De Morgan’s Laws

—-(P A Q)=—p Vv —(Q
—-(pVvq)=—pA—Q

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement,
ask “when is the original statement false”.

De Morgan’s Laws

—-(P A Q)=—p Vv —(Q
—-(pVvq)=—pA—Q

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement,
ask “when is the original statement false”.
It’s false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:
My code doesn’t compile and there is not a bug.

De Morgan’s Laws

Example: =(p A q)=(—p v —q)

P | —q | "pVv—q | pAq | ~(pAq) | ~(pAQG) > (—pV—q)

e B e R B B o

i n T B o T R I)

De Morgan’s Laws

Example: =(p A q)=(—p v —q)

—p | ~q | =pv—q | pAq| =(pAq) | =(pArq) & (=pV—q)

e e e e)
o I e T i B s B R)
—A | 4| ™| ™M
e I e I e B M
— ||
-n-n-n—|>
— | | [™™
e B e B e B

De Morgan’s Laws

—(p A Q)=—p Vv —Q
—(p v Qq)=—p A —Q

if (!(front != null && value > front.data))
front = new ListNode(value, front);

else {
ListNode current = front;
while (current.next != null && current.next.data < value))

current = current.next;
current.next = new ListNode(value, current.next);

De Morgan’s Laws

—(p A Q)=—p Vv —Q
—(p v Qq)=—p A —Q

I (front != null && value > front.data)

front == null || value <= front.data

You’ve been using these for a while!

Law of Implication

p>qg=—pvq

p—>q

pv(qg

p—>q<< pvqg

|| 4|4

m ||| |R

Law of Implication

p—>qg=—pVvq

pv(qg

p—>qg<& pvg

T

R

M| || H|R

— |4

e B s B e B s

—A | 4| ™|

T
T
T

Some Equivalences Related to Implication

P—q = —pvVvq

P—q = —q-—>-Pp

p<d = (p~>a)A(q—>p)
p<d = P —Q

We will always give

Properties of Logical Connectives you this list!
Identity * Associative

-pAT=p - (pvq@Vvr=pv(qVvr)

- pVF=p -~ (PADAT=pA(QAT)
Domination * Distributive

- pVT=T -pA@Vr)=(@AqV(pAT)
— pAF=F -pv@Ar)=(@VgA(pVr)
Idempotent * Absorption

-~ pVp=Dp -pV(@AgQ) =p

—PAP=D -pA(PVQ =P
Commutative Negation

—pVqg=qVp —pVap =T

—PANGQ=EqAD —pAp=F

