CSE 311: Foundations of Computing I

Section 9: Relations and DFAs Solutions

1. Relations

(a) Draw the transitive-reflexive closure of $\{(1,2),(2,3),(3,4)\}$.

Solution:

(b) Suppose that R is reflexive. Prove that $R \subseteq R^{2}$.

Solution:

Let $(a, b) \in R$ be arbitrary. Since R is reflexive, we know $(b, b) \in R$ as well. Since there is a b such that $(a, b) \in R$ and $(b, b) \in R$, it follows that $(a, b) \in R^{2}$. Since a and b were arbitrary, we've shown $R \subseteq R^{2}$.
(c) Consider the relation $R=\{(x, y): x=y+1\}$ on \mathbb{N}.

Is R reflexive? Transitive? Symmetric? Anti-symmetric?

Solution:

It isn't reflexive, because $1 \neq 1+1$; so, $(1,1) \notin R$. It isn't symmetric, because $(2,1) \in R$ (because $2=1+1$), but $(1,2) \notin R$, because $1 \neq 2+1$. It isn't transitive, because note that $(3,2) \in R$ and $(2,1) \in R$, but $(3,1) \notin R$. It is anti-symmetric, because consider $(x, y) \in R$ such that $x \neq y$. Then, $x=y+1$ by definition of R. However, $(y, x) \notin R$, because $y=x-1 \neq x+1$.
(d) Consider the relation $S=\left\{(x, y): x^{2}=y^{2}\right\}$ on \mathbb{R}. Prove that S is reflexive, transitive, and symmetric.

Solution:

Let $x \in \mathbb{R}$ be arbitrary. We know that $x^{2}=x^{2}$, so $(x, x) \in R$. Since x was arbitrary, we have shown that R is reflexive.

Let $(x, y) \in R$ be arbitrary. From the definition of R, we know that $x^{2}=y^{2}$. Since we then also have $y^{2}=x^{2}$, we can see that $(y, x) \in R$. Since x and y were arbitrary, we have shown R is symmetric.

Let $x, y, z \in \mathbb{R}$ be arbitrary. Suppose $(x, y) \in R$ and $(y, z) \in R$. From the definition of R, we have $x^{2}=y^{2}$ and $y^{2}=z^{2}$. Putting these together, we have $x^{2}=z^{2}$, so $(x, z) \in R$. Since x, y, and z were arbitrary, we have shown that R is transitive.

2. DFAs

Construct DFAs to recognize each of the following languages. Let $\Sigma=\{0,1,2,3\}$.
(a) All binary strings.

Solution:

q_{0} : binary strings
q_{1} : strings that contain a character which is not 0 or 1 .
(b) All strings that contain at least one 3 but no 2 .

Solution:

(c) All strings whose digits sum to an even number.

Solution:

(d) All strings whose digits sum to an odd number.

Solution:

3. DFAs II

Construct DFAs to recognize each of the following languages. Let $\Sigma=\{0,1\}$.
(a) Strings that do not contain the substring 101.

Solution:

q_{3} : string that contain 101.
q_{2} : strings that don't contain 101 and end in 10.
q_{1} : strings that don't contain 101 and end in 1.
$q_{0}: \varepsilon, 0$, strings that don't contain 101 and end in 00 .
(b) Strings that contain an even number of 1 s and odd number of 0 's and do not contain the substring 10 .

Solution:

Note that a binary string not containing 10 as a substring must be of the form $0^{*} 1^{*}$. The additional constraints mean we are looking for numbers of the form $0^{x} 1^{y}$ with x odd and y even.

q_{4} : strings that are not of the form $0^{*} 1^{*}$ or are of the form $0^{x} 11^{*}$ with x even
q_{3} : strings of the form $0^{x} 1^{y}$ with x odd and y even
q_{2} : strings of the form $0^{x} 1^{y}$ with x and y odd
q_{1} : strings of the form 0^{x} with x odd
q_{0} : strings of the form 0^{x} with x even

4. Powers of Relations

Let A be a set and R a relation on A. Use induction to prove that R^{n} is exactly the pairs of elements from A that are connected by a path of length n in the graph $G=(A, R)$.

Solution:

Let $P(n)$ be "for all $a, b \in A$, we have $(a, b) \in R^{n}$ iff there is a path of length n from a to b in the graph G^{\prime} ". We will prove $P(n)$ for all integers $n \in \mathbb{N}$ by induction.

Base Case $(n=0)$: $R^{0}=\{(a, a) \mid a \in A\}$ and every element is and can only be connected to itself by a path of length 0 , so $P(0)$ holds.

Induction Hypothesis: Assume that $P(k)$ holds for an arbitrary $k \in \mathbb{N}$.
Induction Step: Our goal is to show $P(k+1)$. I.e., that R^{n+1} is exactly the set of pairs connected by a path of length $n+1$ in G. Note that, by definition, $R^{n+1}=\left\{(a, c) \mid \exists b \in A\left((a, b) \in R^{n} \wedge(b, c) \in R\right)\right\}$.

By the induction hypothesis, $(a, b) \in R^{n}$ holds iff a and b are connected by a path of length n in G. Hence, if $(a, c) \in R^{n+1}$, then there is some $b \in A$ such that there is a path $a=v_{0}, v_{1}, \ldots, v_{n}=b$ in G, which means that $a=v_{0}, v_{1}, \ldots, b, c$ is a path of length $n+1$ connecting a and c in G.
On the other hand, suppose that $a=v_{0}, v_{1}, \ldots, v_{n}, v_{n+1}=c$ is a path of length $n+1$ connecting a and c in G. By the definition of a path, this means that $\left(v_{n}, c\right) \in R$. Furthermore, since $a=v_{0}, v_{1}, \ldots, v_{n}$ is a path of length n in G, by the inductive hypothesis, we have $\left(a, v_{n}\right) \in R^{n}$. Thus, by the definition of R^{n+1}, we can see that $(a, c) \in R^{n+1}$.

Conclusion: $P(n)$ holds for all integers $n \in \mathbb{N}$ by induction.

