
CSE 311: Foundations of Computing I
Section 9: Relations and DFAs Solutions

1. Relations
(a) Draw the transitive-reflexive closure of {(1, 2), (2, 3), (3, 4)}.

Solution:

1

2

3

4

(b) Suppose that R is reflexive. Prove that R ⊆ R2.

Solution:
Let (a, b) ∈ R be arbitrary. Since R is reflexive, we know (b, b) ∈ R as well. Since there is a b such that
(a, b) ∈ R and (b, b) ∈ R, it follows that (a, b) ∈ R2. Since a and b were arbitrary, we’ve shown R ⊆ R2.

(c) Consider the relation R = {(x, y) : x = y + 1} on N.
Is R reflexive? Transitive? Symmetric? Anti-symmetric?

Solution:
It isn’t reflexive, because 1 6= 1 + 1; so, (1, 1) 6∈ R. It isn’t symmetric, because (2, 1) ∈ R (because
2 = 1 + 1), but (1, 2) 6∈ R, because 1 6= 2 + 1. It isn’t transitive, because note that (3, 2) ∈ R and
(2, 1) ∈ R, but (3, 1) 6∈ R. It is anti-symmetric, because consider (x, y) ∈ R such that x 6= y. Then,
x = y + 1 by definition of R. However, (y, x) 6∈ R, because y = x− 1 6= x+ 1.

(d) Consider the relation S = {(x, y) : x2 = y2} on R. Prove that S is reflexive, transitive, and symmetric.

Solution:
Let x ∈ R be arbitrary. We know that x2 = x2, so (x, x) ∈ R. Since x was arbitrary, we have shown that
R is reflexive.

Let (x, y) ∈ R be arbitrary. From the definition of R, we know that x2 = y2. Since we then also
have y2 = x2, we can see that (y, x) ∈ R. Since x and y were arbitrary, we have shown R is symmetric.

Let x, y, z ∈ R be arbitrary. Suppose (x, y) ∈ R and (y, z) ∈ R. From the definition of R, we have
x2 = y2 and y2 = z2. Putting these together, we have x2 = z2, so (x, z) ∈ R. Since x, y, and z were
arbitrary, we have shown that R is transitive.
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2. DFAs
Construct DFAs to recognize each of the following languages. Let Σ = {0, 1, 2, 3}.

(a) All binary strings.

Solution:

q0 q1

0, 1

2, 3

0, 1, 2, 3

q0: binary strings
q1: strings that contain a character which is not 0 or 1.

(b) All strings that contain at least one 3 but no 2.

Solution:

q0 q1

q2

0, 1

3

2

0, 1, 3

2

0, 1, 2, 3

(c) All strings whose digits sum to an even number.

Solution:

q0 q1

0, 2

1, 3

0, 2

1, 3

(d) All strings whose digits sum to an odd number.

Solution:

q0 q1

0, 2

1, 3

0, 2

1, 3
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3. DFAs II
Construct DFAs to recognize each of the following languages. Let Σ = {0, 1}.

(a) Strings that do not contain the substring 101.

Solution:

q0 q1 q2 q3

0

1

1

0

0

1

0, 1

q3: string that contain 101.
q2: strings that don’t contain 101 and end in 10.
q1: strings that don’t contain 101 and end in 1.
q0: ε, 0, strings that don’t contain 101 and end in 00.

(b) Strings that contain an even number of 1s and odd number of 0’s and do not contain the substring 10.

Solution:
Note that a binary string not containing 10 as a substring must be of the form 0∗1∗. The additional
constraints mean we are looking for numbers of the form 0x1y with x odd and y even.

q0

q1

q2

q3q4

0

1

0

1

0
1

0

1

0, 1

q4: strings that are not of the form 0∗1∗ or are of the form 0x11∗ with x even
q3: strings of the form 0x1y with x odd and y even
q2: strings of the form 0x1y with x and y odd
q1: strings of the form 0x with x odd
q0: strings of the form 0x with x even
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4. Powers of Relations
Let A be a set and R a relation on A. Use induction to prove that Rn is exactly the pairs of elements from A
that are connected by a path of length n in the graph G = (A,R).

Solution:
Let P (n) be “for all a, b ∈ A, we have (a, b) ∈ Rn iff there is a path of length n from a to b in the graph G”.
We will prove P (n) for all integers n ∈ N by induction.

Base Case (n = 0): R0 = {(a, a) | a ∈ A} and every element is and can only be connected to itself by a path
of length 0, so P (0) holds.

Induction Hypothesis: Assume that P (k) holds for an arbitrary k ∈ N.

Induction Step: Our goal is to show P (k+ 1). I.e., that Rn+1 is exactly the set of pairs connected by a path
of length n+ 1 in G. Note that, by definition, Rn+1 = {(a, c) | ∃b ∈ A ((a, b) ∈ Rn ∧ (b, c) ∈ R)}.
By the induction hypothesis, (a, b) ∈ Rn holds iff a and b are connected by a path of length n in G.
Hence, if (a, c) ∈ Rn+1, then there is some b ∈ A such that there is a path a = v0, v1, . . . , vn = b in G,
which means that a = v0, v1, . . . , b, c is a path of length n+ 1 connecting a and c in G.
On the other hand, suppose that a = v0, v1, . . . , vn, vn+1 = c is a path of length n+ 1 connecting a and
c in G. By the definition of a path, this means that (vn, c) ∈ R. Furthermore, since a = v0, v1, . . . , vn is
a path of length n in G, by the inductive hypothesis, we have (a, vn) ∈ Rn. Thus, by the definition of
Rn+1, we can see that (a, c) ∈ Rn+1.

Conclusion: P (n) holds for all integers n ∈ N by induction.
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