
CSE 311: Foundations of Computing I
Section 8: Structural Induction and REs

1. Structural Induction I
Consider the following recursive definition of strings Σ∗ over the alphabet Σ.

Basis Step: ε is a string
Recursive Step: If w is a string and a ∈ Σ is a character, then wa is a string.

Recall the following recursive definition of the function len:

len(ε) = 0

len(wa) = 1 + len(w)

Now, consider the following recursive definition:

double(ε) = ε

double(wa) = double(w)aa.

Prove that, for any string x, we have len(double(x)) = 2 len(x).

2. Structural Induction II
Consider the following definition of a (binary) Tree:

Basis Step: • is a Tree.
Recursive Step: If L is a Tree and R is a Tree then Tree(•, L,R) is a Tree.

The function leaves returns the number of leaves of a Tree. It is defined as follows:

leaves(•) = 1

leaves(Tree(•, L,R)) = leaves(L) + leaves(R)

Also, recall the definition of size on trees:

size(•) = 1

size(Tree(•, L,R)) = 1 + size(L) + size(R)

Prove that leaves(T ) ≥ size(T )/2 for all T ∈ Trees.

3. Regular Expressions
(a) Write a regular expression that matches base 10 non-negative numbers.

(Note that there should be no leading zeroes.)

(b) Write a regular expression that matches all non-negative base-3 numbers that are divisible by 3.

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the
substring “000”.

1



4. CFGs
Construct CFGs for the following languages:

(a) All binary strings that end in 00.

(b) All binary strings that contain at least three 1’s.

(c) Propositional logic statements using only variables from a fixed alphabet A = {. . . , p, q, r, . . .} and only
the operators ¬, ∧, and ∨ as well as parentheses “(..)”. (Assume no space characters.)

5. Structural Induction III
In this problem, we will prove De Morgan’s Law for arbitrary propositions. For example, we will show that

¬(p1 ∧ p2 ∧ · · · ∧ pn) ≡ ¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn.

is true for any n ≥ 1.
Let A = {. . . , p, q, r, . . .} be a fixed set of atomic propositions. We then define the set Prop as follows:

Basis Elements For any p ∈ A, Atomic(p) ∈ Prop.

Recursive Step If A,B ∈ Prop, then Neg(A),Wedge(A,B),Vee(A,B) ∈ Prop.

The set Prop represents parse trees of propositions. We allow the propositions to be combined using the
operators, Wedge and Vee (the names of ∧ and ∨ in LATEX). We also allow negation of propositions with Neg.

Next, we define a function T that takes a parse tree (an element of Prop) as input and returns the
proposition that it represents.. Formally we define,

T (Atomic(p)) = p for any p ∈ A
T (Wedge(A,B)) = (T (A)) ∧ (T (B)) for any A,B ∈ Prop

T (Vee(A,B)) = (T (A)) ∨ (T (B)) for any A,B ∈ Prop

T (Neg(A)) = ¬T (A) for any A ∈ Prop

The function flip takes a parse tree as input and returns another parse tree as follows:

flip(Atomic(p)) = Neg(Atomic(p)) for any p ∈ A
flip(Wedge(A,B)) = Vee(flip(A), flip(B)) for any A,B ∈ Prop

flip(Vee(A,B)) = Wedge(flip(A), flip(B)) for any A,B ∈ Prop

flip(Neg(A)) = A for any A ∈ Prop

The function flip negates each atomic proposition and swaps ∨ with ∧ (and vice versa) throughout the tree.
With those definitions in hand, use structural induction show that, for any A ∈ Prop,

T (Neg(A)) ≡ T (flip(A)).

This proves that we can produce a proposition that is equivalent to negating the expression by, instead, flipping
all ∧s to ∨s (and vice versa) and negating atomic propositions recursively until we hit ¬s.

2


