CSE 311: Foundations of Computing I

Section 8: Structural Induction and REs

1. Structural Induction I

Consider the following recursive definition of strings Σ^{*} over the alphabet Σ.
Basis Step: ε is a string
Recursive Step: If w is a string and $a \in \Sigma$ is a character, then $w a$ is a string.
Recall the following recursive definition of the function len:

$$
\begin{array}{ll}
\operatorname{len}(\varepsilon) & =0 \\
\operatorname{len}(w a) & =1+\operatorname{len}(w)
\end{array}
$$

Now, consider the following recursive definition:

$$
\begin{array}{ll}
\operatorname{double}(\varepsilon) & =\varepsilon \\
\text { double }(w a) & =\operatorname{double}(w) a a .
\end{array}
$$

Prove that, for any string x, we have len(double $(x))=2 \operatorname{len}(x)$.

2. Structural Induction II

Consider the following definition of a (binary) Tree:
Basis Step: • is a Tree.
Recursive Step: If L is a Tree and R is a Tree then $\operatorname{Tree}(\bullet, L, R)$ is a Tree.
The function leaves returns the number of leaves of a Tree. It is defined as follows:

$$
\begin{array}{ll}
\text { leaves }(\bullet) & =1 \\
\text { leaves }(\operatorname{Tree}(\bullet, L, R)) & =\text { leaves }(L)+\text { leaves }(R)
\end{array}
$$

Also, recall the definition of size on trees:

$$
\begin{array}{ll}
\operatorname{size}(\bullet) & =1 \\
\operatorname{size}(\operatorname{Tree}(\bullet, L, R)) & =1+\operatorname{size}(L)+\operatorname{size}(R)
\end{array}
$$

Prove that leaves $(T) \geq \operatorname{size}(T) / 2$ for all $T \in$ Trees.

3. Regular Expressions

(a) Write a regular expression that matches base 10 non-negative numbers.
(Note that there should be no leading zeroes.)
(b) Write a regular expression that matches all non-negative base- 3 numbers that are divisible by 3 .
(c) Write a regular expression that matches all binary strings that contain the substring " 111 ", but not the substring "000".

4. CFGs

Construct CFGs for the following languages:
(a) All binary strings that end in 00 .
(b) All binary strings that contain at least three 1's.
(c) Propositional logic statements using only variables from a fixed alphabet $\mathcal{A}=\{\ldots, p, q, r, \ldots\}$ and only the operators \neg, \wedge, and \vee as well as parentheses "(..)". (Assume no space characters.)

5. Structural Induction III

In this problem, we will prove De Morgan's Law for arbitrary propositions. For example, we will show that

$$
\neg\left(p_{1} \wedge p_{2} \wedge \cdots \wedge p_{n}\right) \equiv \neg p_{1} \vee \neg p_{2} \vee \cdots \vee \neg p_{n} .
$$

is true for any $n \geq 1$.
Let $\mathcal{A}=\{\ldots, p, q, r, \ldots\}$ be a fixed set of atomic propositions. We then define the set Prop as follows:
Basis Elements For any $p \in \mathcal{A}$, Atomic $(p) \in \operatorname{Prop}$.
Recursive Step If $A, B \in \operatorname{Prop}$, then $\operatorname{Neg}(A), \operatorname{Wedge}(A, B), \operatorname{Vee}(A, B) \in \operatorname{Prop}$.
The set Prop represents parse trees of propositions. We allow the propositions to be combined using the operators, Wedge and Vee (the names of \wedge and \vee in $A T T_{E X}$). We also allow negation of propositions with Neg.

Next, we define a function \mathcal{T} that takes a parse tree (an element of Prop) as input and returns the proposition that it represents.. Formally we define,

$$
\begin{aligned}
\mathcal{T}(\operatorname{Atomic}(p)) & =p & & \text { for any } p \in \mathcal{A} \\
\mathcal{T}(\operatorname{Wedge}(A, B)) & =(\mathcal{T}(A)) \wedge(\mathcal{T}(B)) & & \text { for any } A, B \in \operatorname{Prop} \\
\mathcal{T}(\operatorname{Vee}(A, B)) & =(\mathcal{T}(A)) \vee(\mathcal{T}(B)) & & \text { for any } A, B \in \operatorname{Prop} \\
\mathcal{T}(\operatorname{Neg}(A)) & =\neg \mathcal{T}(A) & & \text { for any } A \in \text { Prop }
\end{aligned}
$$

The function flip takes a parse tree as input and returns another parse tree as follows:

$$
\begin{aligned}
\text { flip }(\operatorname{Atomic}(p)) & =\operatorname{Neg}(\operatorname{Atomic}(p)) & & \text { for any } p \in \mathcal{A} \\
\operatorname{flip}(\operatorname{Wedge}(A, B)) & =\operatorname{Vee}(\operatorname{flip}(A), \operatorname{flip}(B)) & & \text { for any } A, B \in \operatorname{Prop} \\
\operatorname{flip}(\operatorname{Vee}(A, B)) & =\operatorname{Wedge}(\operatorname{flip}(A), \operatorname{flip}(B)) & & \text { for any } A, B \in \operatorname{Prop} \\
\operatorname{flip}(\operatorname{Neg}(A)) & =A & & \text { for any } A \in \operatorname{Prop}
\end{aligned}
$$

The function flip negates each atomic proposition and swaps \vee with \wedge (and vice versa) throughout the tree.
With those definitions in hand, use structural induction show that, for any $A \in$ Prop,

$$
\mathcal{T}(\operatorname{Neg}(A)) \equiv \mathcal{T}(\operatorname{flip}(A)) .
$$

This proves that we can produce a proposition that is equivalent to negating the expression by, instead, flipping all $\wedge s$ to $\vee s$ (and vice versa) and negating atomic propositions recursively until we hit $\neg s$.

