
CSE 311: Foundations of Computing I
Section 8: Structural Induction, REs, and CFGs Solutions

1. Structural Induction I
Consider the following recursive definition of strings Σ∗ over the alphabet Σ.

Basis Step: ε is a string
Recursive Step: If w is a string and a ∈ Σ is a character, then wa is a string.

Recall the following recursive definition of the function len:

len(ε) = 0

len(wa) = 1 + len(w)

Now, consider the following recursive definition:

double(ε) = ε

double(wa) = double(w)aa.

Prove that, for any string x, we have len(double(x)) = 2 len(x).
Solution:
Let P(x) be “len(double(x)) = 2 len(x)“. We prove P(x) for all strings x ∈ Σ∗ by structural induction.

Base Case. By definition, len(double(ε)) = len(ε) = 0 = 2 · 0 = 2 len(ε), so P(ε) holds.

Induction Hypothesis. Suppose P(w) holds for some arbitrary string w.

Induction Step. We show that P(wa) holds, for any character a ∈ Σ, as follows:

len(double(wa)) = len(double(w)aa) Def of double
= 1 + len(double(w)a) Def of len
= 1 + 1 + len(double(w)) Def of len
= 2 + 2 len(w) Inductive Hypothesis
= 2(1 + len(w))
= 2 len(wa) Def of len

Thus, P(x) holds for all strings x ∈ Σ∗ by structural induction.

2. Structural Induction II
Consider the following definition of a (binary) Tree:

Basis Step: • is a Tree.
Recursive Step: If L is a Tree and R is a Tree then Tree(•, L,R) is a Tree.

The function leaves returns the number of leaves of a Tree. It is defined as follows:

leaves(•) = 1

leaves(Tree(•, L,R)) = leaves(L) + leaves(R)

Also, recall the definition of size on trees:

size(•) = 1

size(Tree(•, L,R)) = 1 + size(L) + size(R)

Prove that leaves(T) ≥ size(T)/2 for all T ∈ Trees.

1

Solution:
In this problem, we define a strengthened predicate. For a tree T , let P be leaves(T) ≥ size(T)/2 + 1/2. We
prove P for all trees T by structural induction.

Base Case. We show that P(·) holds. By definition of leaves(.), leaves(•) = 1 and size(•) = 1. So,
leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2.

Induction Hypothesis: Suppose P(L) and P(R) hold for some arbitrary trees L and R.

Induction Step: We prove that P(Tree(•, L,R)) holds as follows:

leaves(Tree(•, L,R)) = leaves(L) + leaves(R) Def of leaves
≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) Inductive Hypothesis
= (size(L) + size(R) + 1)/2 + 1/2

= size(Tree(•, L,R))/2 + 1/2 Def of size

Thus, the P(T) holds for all trees T .

3. Regular Expressions
(a) Write a regular expression that matches base 10 non-negative numbers.

(Note that there should be no leading zeroes.)

Solution:

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗)

(b) Write a regular expression that matches all non-negative base-3 numbers that are divisible by 3.

Solution:

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗0)

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the
substring “000”.

Solution:

(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)111(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)

(If you don’t want the substring 000, the only way you can produce 0s is if there are only one or two 0s
in a row, and they are immediately followed by a 1 or the end of the string.)

2

4. CFGs
Construct CFGs for the following languages:

(a) All binary strings that end in 00.

Solution:

S → 0S | 1S | 00

(b) All binary strings that contain at least three 1’s.

Solution:

S → TTT
T → 0T | T0 | 1T | 1

(c) Propositional logic statements using only variables from a fixed alphabet A = {. . . , p, q, r, . . .} and only
the operators ¬, ∧, and ∨ as well as parentheses “(..)”. (Assume no space characters.)

Solution:

S → F | S ∨ F
F → P | F ∧ F
P → V | (S) | ¬P
V → · · · | p | q | r | . . .

Note that this gives ∧ higher precedence than ∨, as would be expected.

5. Structural Induction III
In this problem, we will prove De Morgan’s Law for arbitrary propositions. For example, we will show that

¬(p1 ∧ p2 ∧ · · · ∧ pn) ≡ ¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn.

is true for any n ≥ 1.
Let A = {. . . , p, q, r, . . .} be a fixed set of atomic propositions. We then define the set Prop as follows:

Basis Elements For any p ∈ A, Atomic(p) ∈ Prop.

Recursive Step If A,B ∈ Prop, then Neg(A),Wedge(A,B),Vee(A,B) ∈ Prop.

The set Prop represents parse trees of propositions. We allow the propositions to be combined using the
operators, Wedge and Vee (the names of ∧ and ∨ in LATEX). We also allow negation of propositions with Neg.

Next, we define a function T that takes a parse tree (an element of Prop) as input and returns the
proposition that it represents.. Formally we define,

T (Atomic(p)) = p for any p ∈ A
T (Wedge(A,B)) = (T (A)) ∧ (T (B)) for any A,B ∈ Prop

T (Vee(A,B)) = (T (A)) ∨ (T (B)) for any A,B ∈ Prop

T (Neg(A)) = ¬T (A) for any A ∈ Prop

3

The function flip takes a parse tree as input and returns another parse tree as follows:

flip(Atomic(p)) = Neg(Atomic(p)) for any p ∈ A
flip(Wedge(A,B)) = Vee(flip(A), flip(B)) for any A,B ∈ Prop

flip(Vee(A,B)) = Wedge(flip(A), flip(B)) for any A,B ∈ Prop

flip(Neg(A)) = A for any A ∈ Prop

The function flip negates each atomic proposition and swaps ∨ with ∧ (and vice versa) throughout the tree.
With those definitions in hand, use structural induction show that, for any A ∈ Prop,

T (Neg(A)) ≡ T (flip(A)).

This proves that we can produce a proposition that is equivalent to negating the expression by, instead, flipping
all ∧s to ∨s (and vice versa) and negating atomic propositions recursively until we hit ¬s.

Solution:
Let P (A) be “T (Neg(A)) ≡ T (flip(A))”. We prove P (A) for all A ∈ Prop by structural induction.

Base Case Let p be an arbitrary member of A. In this case, P (Atomic(p)) says

T (Neg(Atomic(p))) = T (flip(Atomic(p))),

which is immediate from the definition of flip (read right-to-left).

Induction Hypothesis Suppose P (A) and P (B) hold for some arbitrary A and B in Prop.

Induction Step We show P (Wedge(A,B)) as follows (P (Vee(A,B)) is similar and left as an exercise):

T (Neg(Wedge(A,B)) = ¬T (Wedge(A,B)) Def of T
= ¬(T (A) ∧ T (B)) Def of T
≡ ¬T (A) ∨ ¬T (B) De Morgan’s Law
= T (Neg(A)) ∨ T (Neg(B)) Def of T
≡ T (flip(A)) ∨ T (flip(B)) Induction Hypothesis
= T (Vee(flip(A), flip(B))) Def of T
= T (flip(Wedge(A,B))) Def of flip

We can show P (Neg(A) as follows:

T (Neg(Neg(A)) = ¬T (Neg(A)) Def of T
= ¬¬T (A) Def of T
≡ T (A) Double Negation
= T (flip(Neg(A))) Def of flip

Thus, P (A) holds for all parse trees A ∈ Prop, by structural induction.

4

