CSE 311: Foundations of Computing I

Section 7: Strong Induction and Recursive Sets Solutions

1. Binary Representations

Prove that every natural number can be written as a sum of *distinct* powers of two. (I.e., that it has a unique binary representation.)

Solution:

Let P(n) be "n can written as a sum of distinct powers of two, each no larger than n". We will prove P(n) for all integers $n \in \mathbb{N}$ by strong induction.

Base Case (n = 0): 0 is equal to an empty sum (no powers of two), so P(0) holds.

Induction Hypothesis: Assume that P(j) holds for all integers $0 \le j \le k$ for some arbitrary $k \in \mathbb{N}$.

Induction Step: Our goal is to show P(k+1). I.e., that k+1 can be written as a sum of distinct powers of two, each no larger than k+1.

Let 2^{ℓ} be the largest power of two not greater than k+1 (i.e. $\ell = \lfloor \log_2(k+1) \rfloor$). Let $r = (k+1) - 2^{\ell}$, and note that r < k+1 since $2^{\ell} > 0$, so that we can apply the inductive hypothesis to r to write it as a sum $r = 2^{i_1} + 2^{i_2} + \cdots + 2^{i_t}$, where each i_j is distinct and satisfies $2^{i_j} \leq r$.

We must have each $i_j < \ell$. Otherwise, we have $i_j \ge \ell$, which means $2^{i_j} \ge 2^{\ell}$ and so $r = 2^{i_1} + \cdots + 2^{i_t} \ge 2^{i_j} \ge 2^{\ell}$. That means $k + 1 = r + 2^{\ell} \ge 2^{\ell} + 2^{\ell} = 2^{\ell+1}$, showing that $2^{\ell+1} \le k + 1$, which contradicts our assumption that 2^{ℓ} was the largest power of 2 that is less than or equal to k + 1. (Note that this is a proof by contradiction within the larger proof.)

Now, write k + 1 as $r + 2^{\ell} = 2^{i_1} + 2^{i_2} + \cdots + 2^{i_t} + 2^{\ell}$, a sum of powers of two. Each of the i_j 's are distinct from each other, by assumption, and from ℓ , since each satisfies $i_j < \ell$. Furthermore, we have $2^{i_j} \le r < 2^{\ell} \le k + 1$, so none of the powers of two in the sum are larger than k + 1. This shows P(k+1).

Conclusion: P(n) holds for all integers $n \in \mathbb{N}$ by induction.

2. Cantelli's Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in a given year is described by the function f:

$$\begin{split} f(0) &= 0 \\ f(1) &= 1 \\ f(n) &= 2f(n-1) - f(n-2) \qquad \text{for } n \geq 2 \end{split}$$

Determine, with proof, the number, f(n), of rabbits that Cantelli owns in year n.

Solution:

Let P(n) be "f(n) = n". We prove that P(n) is true for all $n \in \mathbb{N}$ by strong induction on n.

Base Cases (n = 0, 1): f(0) = 0 by definition, so P(0) holds, and f(1) = 1, so P(1) holds.

Induction Hypothesis: Assume that for some arbitrary integer $k \ge 1$, P(j) holds for all $0 \le j \le k$. That is, for each number in this range, we have f(j) = j.

Induction Step: We show P(k+1), i.e. that f(k+1) = k+1.

Since $k+1 \ge 2$, we have

f(k+1) = 2f(k) - f(k-1)	Definition of f
= 2(k) - f(k-1)	Inductive Hypothesis
= 2(k) - (k - 1)	Inductive Hypothesis
= k + 1	Algebra

which is P(k+1).

Therefore, P(n) is true for all $n \in \mathbb{N}$.

3. Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify that your solution is correct.

(a) Binary strings of even length.

Solution:

Basis: $\varepsilon \in S$.

Recursive Step: If $x \in S$, then $x00, x01, x10, x11 \in S$.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the recursive step.

"Brief" Justification: We will show that $x \in S$ iff x has even length (i.e., |x| = 2n for some $n \in \mathbb{N}$). (Note: "brief" is in quotes here. Try to write shorter explanations in your homework assignment when possible!)

Suppose $x \in S$. If x is the empty string, then it has length 0, which is even. Otherwise, x is built up from the empty string by repeated application of the recursive step, so it is of the form $x_1x_2\cdots x_n$, where each $x_i \in \{00, 01, 10, 11\}$. In that case, we can see that $|x| = |x_1| + |x_2| + \cdots + |x_n| = 2n$, which is even.

Now, suppose that x has even length. If it's length is zero, then it is the empty string, which is in S. Otherwise, it has length 2n for some n > 0, and we can write x in the form $x_1x_2 \cdots x_n$, where each $x_i \in \{00, 01, 10, 11\}$ has length 2. Hence, we can see that x can be built up from the empty string by applying the recursive step with x_1 , then x_2 , and so on up to x_n , which shows that $x \in S$.

(b) Binary strings not containing 10.

Solution:

If the string does not contain 10, then the first 1 in the string can only be followed by more 1s. Hence, it must be of the form $0^m 1^n$ for some $m, n \in \mathbb{N}$.

Basis: $\varepsilon \in S$.

Recursive Step: If $x \in S$, then $0x \in S$ and $x1 \in S$.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the recursive step.

Brief Justification: The empty string satisfies the property, and the recursive step cannot place a 0 after a 1 since it only adds 0s on the left. Hence, every string in S satisfies the property.

In the other direction, from our discussion above, any string of this form can be written as $y = 0^m 1^n$ for some $m, n \in \mathbb{N}$. We can build up the string y from the empty string by applying the rule $x \mapsto 0x m$ times and then applying the rule $x \mapsto x1 n$ times. This shows that the string y is in S.

(c) Binary strings not containing 10 as a substring and having at least as many 1s as 0s.

Solution:

These must be of the form $0^m 1^n$ for some $m, n \in \mathbb{N}$ with $m \leq n$. We can ensure that by pairing up the 0s with 1s as they are added:

Basis: $\varepsilon \in S$.

Recursive Step: If $x \in S$, then $0x1 \in S$ and $x1 \in S$.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the recursive step.

Brief Justification: As in the previous part, we cannot add a 0 after a 1 because we only add 0s at the front. And since every 0 comes with a 1, we always have at least as many 1s as 0s.

In the other direction, from our discussion above, any string of this form can be written as xy, where $x = 0^m 1^m$ and $y = 1^{n-m}$, since $n \ge m$. We can build up the string x from the empty string by applying the rule $x \mapsto 0x1$ m times and then produce the string xy by applying the rule $x \mapsto x1$ n-m times, which shows that the string is in S.

(d) Binary strings containing at most two 0s and at most two 1s.

Solution:

This is the set of all binary strings of length at most 4 *except* for these:

```
000, 1000, 0100, 0010, 0001, 0000, 111, 0111, 1011, 1101, 1110, 1111
```

Since this is a **finite set**, we can define it recursively using only basis elements and no recursive step.