CSE 311: Foundations of Computing I

Section 7: Strong Induction and Recursive Sets Solutions

1. Binary Representations

Prove that every natural number can be written as a sum of distinct powers of two. (l.e., that it has a unique binary representation.)

Solution:

Let $P(n)$ be " n can written as a sum of distinct powers of two, each no larger than n ". We will prove $P(n)$ for all integers $n \in \mathbb{N}$ by strong induction.

Base Case $(n=0): 0$ is equal to an empty sum (no powers of two), so $P(0)$ holds.
Induction Hypothesis: Assume that $P(j)$ holds for all integers $0 \leq j \leq k$ for some arbitrary $k \in \mathbb{N}$.
Induction Step: Our goal is to show $P(k+1)$. I.e., that $k+1$ can be written as a sum of distinct powers of two, each no larger than $k+1$.
Let 2^{ℓ} be the largest power of two not greater than $k+1$ (i.e. $\left.\ell=\left\lfloor\log _{2}(k+1)\right\rfloor\right)$. Let $r=(k+1)-2^{\ell}$, and note that $r<k+1$ since $2^{\ell}>0$, so that we can apply the inductive hypothesis to r to write it as a sum $r=2^{i_{1}}+2^{i_{2}}+\cdots+2^{i_{t}}$, where each i_{j} is distinct and satisfies $2^{i_{j}} \leq r$.
We must have each $i_{j}<\ell$. Otherwise, we have $i_{j} \geq \ell$, which means $2^{i_{j}} \geq 2^{\ell}$ and so $r=2^{i_{1}}+\cdots+2^{i_{t}} \geq$ $2^{i_{j}} \geq 2^{\ell}$. That means $k+1=r+2^{\ell} \geq 2^{\ell}+2^{\ell}=2^{\ell+1}$, showing that $2^{\ell+1} \leq k+1$, which contradicts our assumption that 2^{ℓ} was the largest power of 2 that is less than or equal to $k+1$. (Note that this is a proof by contradiction within the larger proof.)
Now, write $k+1$ as $r+2^{\ell}=2^{i_{1}}+2^{i_{2}}+\cdots+2^{i_{t}}+2^{\ell}$, a sum of powers of two. Each of the i_{j} 's are distinct from each other, by assumption, and from ℓ, since each satisfies $i_{j}<\ell$. Furthermore, we have $2^{i} \leq r<2^{\ell} \leq k+1$, so none of the powers of two in the sum are larger than $k+1$. This shows $P(k+1)$.

Conclusion: $P(n)$ holds for all integers $n \in \mathbb{N}$ by induction.

2. Cantelli's Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in a given year is described by the function f :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2) \quad \text { for } n \geq 2
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n.

Solution:

Let $\mathrm{P}(n)$ be " $f(n)=n$ ". We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$ by strong induction on n.
Base Cases $(n=0,1): f(0)=0$ by definition, so $\mathrm{P}(0)$ holds, and $f(1)=1$, so $\mathrm{P}(1)$ holds.
Induction Hypothesis: Assume that for some arbitrary integer $k \geq 1, \mathrm{P}(j)$ holds for all $0 \leq j \leq k$. That is, for each number in this range, we have $f(j)=j$.

Induction Step: We show $\mathrm{P}(k+1)$, i.e. that $f(k+1)=k+1$.
Since $k+1 \geq 2$, we have

$$
\begin{aligned}
f(k+1) & =2 f(k)-f(k-1) \\
& =2(k)-f(k-1) \\
& =2(k)-(k-1) \\
& =k+1
\end{aligned}
$$

which is $\mathrm{P}(k+1)$.
Therefore, $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.

3. Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify that your solution is correct.
(a) Binary strings of even length.

Solution:

Basis: $\varepsilon \in S$.
Recursive Step: If $x \in S$, then $x 00, x 01, x 10, x 11 \in S$.
Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the recursive step.
"Brief" Justification: We will show that $x \in S$ iff x has even length (i.e., $|x|=2 n$ for some $n \in \mathbb{N}$). (Note: "brief" is in quotes here. Try to write shorter explanations in your homework assignment when possible!)
Suppose $x \in S$. If x is the empty string, then it has length 0 , which is even. Otherwise, x is built up from the empty string by repeated application of the recursive step, so it is of the form $x_{1} x_{2} \cdots x_{n}$, where each $x_{i} \in\{00,01,10,11\}$. In that case, we can see that $|x|=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|=2 n$, which is even.
Now, suppose that x has even length. If it's length is zero, then it is the empty string, which is in S. Otherwise, it has length $2 n$ for some $n>0$, and we can write x in the form $x_{1} x_{2} \cdots x_{n}$, where each $x_{i} \in\{00,01,10,11\}$ has length 2 . Hence, we can see that x can be built up from the empty string by applying the recursive step with x_{1}, then x_{2}, and so on up to x_{n}, which shows that $x \in S$.
(b) Binary strings not containing 10 .

Solution:

If the string does not contain 10 , then the first 1 in the string can only be followed by more 1 s . Hence, it must be of the form $0^{m} 1^{n}$ for some $m, n \in \mathbb{N}$.

Basis: $\varepsilon \in S$.
Recursive Step: If $x \in S$, then $0 x \in S$ and $x 1 \in S$.
Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the recursive step.
Brief Justification: The empty string satisfies the property, and the recursive step cannot place a 0 after a 1 since it only adds 0 s on the left. Hence, every string in S satisfies the property.
In the other direction, from our discussion above, any string of this form can be written as $y=0^{m} 1^{n}$ for some $m, n \in \mathbb{N}$. We can build up the string y from the empty string by applying the rule $x \mapsto 0 x m$ times and then applying the rule $x \mapsto x 1 n$ times. This shows that the string y is in S.
(c) Binary strings not containing 10 as a substring and having at least as many 1 s as 0 s .

Solution:

These must be of the form $0^{m} 1^{n}$ for some $m, n \in \mathbb{N}$ with $m \leq n$. We can ensure that by pairing up the 0 s with 1 s as they are added:
Basis: $\varepsilon \in S$.
Recursive Step: If $x \in S$, then $0 x 1 \in S$ and $x 1 \in S$.
Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the recursive step.
Brief Justification: As in the previous part, we cannot add a 0 after a 1 because we only add 0 s at the front. And since every 0 comes with a 1 , we always have at least as many 1 s as 0 s .

In the other direction, from our discussion above, any string of this form can be written as $x y$, where $x=0^{m} 1^{m}$ and $y=1^{n-m}$, since $n \geq m$. We can build up the string x from the empty string by applying the rule $x \mapsto 0 x 1 m$ times and then produce the string $x y$ by applying the rule $x \mapsto x 1 n-m$ times, which shows that the string is in S.
(d) Binary strings containing at most two 0 s and at most two 1 s .

Solution:

This is the set of all binary strings of length at most 4 except for these:

$$
000,1000,0100,0010,0001,0000,111,0111,1011,1101,1110,1111
$$

Since this is a finite set, we can define it recursively using only basis elements and no recursive step.

