CSE 311: Foundations of Computing |

Section 7: Strong Induction and Recursive Sets Solutions

1. Binary Representations

Prove that every natural number can be written as a sum of distinct powers of two. (l.e., that it has a unique
binary representation.)

Solution:

Let P(n) be “n can written as a sum of distinct powers of two, each no larger than n". We will prove P(n) for
all integers n € N by strong induction.

Base Case (n = 0): 0 is equal to an empty sum (no powers of two), so P(0) holds.
Induction Hypothesis: Assume that P(j) holds for all integers 0 < j < k for some arbitrary k € N.

Induction Step: Our goal is to show P(k + 1). l.e., that k£ + 1 can be written as a sum of distinct powers of
two, each no larger than k£ + 1.

Let 2¢ be the largest power of two not greater than k + 1 (i.e. £ = |logy(k +1)]). Let r = (k4 1) — 2,
and note that < k + 1 since 2¢ > 0, so that we can apply the inductive hypothesis to 7 to write it as a
sum 7 = 2/ 4292 4 ... 4 2 where each 1 is distinct and satisfies 2l < .

We must have each i; < £. Otherwise, we have i; > ¢, which means 24 > 920 and so r = 201 ... 420t >
2 > 2¢. That means k + 1 = r + 2¢ > 2¢ 4+ 2¢ = 21 showing that 2¢+1 < k + 1, which contradicts
our assumption that 2¢ was the largest power of 2 that is less than or equal to k 4 1. (Note that this is
a proof by contradiction within the larger proof.)

Now, write k + 1 as r + 2¢ = 20 4 282 4 ... 4 2% 4+ 26 3 sum of powers of two. Each of the i;'s are
distinct from each other, by assumption, and from /, since each satisfies i; < ¢. Furthermore, we have
2t < r < 2" < k+1, so none of the powers of two in the sum are larger than k+ 1. This shows P(k+1).

Conclusion: P(n) holds for all integers n € N by induction.



2. Cantelli’s Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in a given year is described by the function f:

0
f)=1
2fln—=1) = f(n—2) forn > 2

Determine, with proof, the number, f(n), of rabbits that Cantelli owns in year n.

Solution:
Let P(n) be “f(n) =n". We prove that P(n) is true for all n € N by strong induction on n.

Base Cases (n = 0,1): f(0) = 0 by definition, so P(0) holds, and f(1) =1, so P(1) holds.

Induction Hypothesis: Assume that for some arbitrary integer £ > 1, P(j) holds for all 0 < j < k. That is,
for each number in this range, we have f(j) = j.

Induction Step: We show P(k + 1), i.e. that f(k+1) =k + 1.
Since k£ +1 > 2, we have

flk+1)=2f(k)— f(k—1) Definition of f
=2(k)— f(k—-1) Inductive Hypothesis
=2(k)—(k—1) Inductive Hypothesis
=k+1 Algebra

which is P(k 4 1).

Therefore, P(n) is true for all n € N.



3. Recursively Defined Sets of Strings
For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly
justify that your solution is correct.

(a)

Binary strings of even length.

Solution:

Basis: ¢ € S.

Recursive Step: If x € S, then 200, 201,210, z11 € S.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the
recursive step.

“Brief” Justification: We will show that = € S iff x has even length (i.e., |x| = 2n for some n € N).
(Note: “brief” is in quotes here. Try to write shorter explanations in your homework assignment when
possible!)

Suppose x € S. If x is the empty string, then it has length 0, which is even. Otherwise, x is built up from
the empty string by repeated application of the recursive step, so it is of the form x1x5 - - - x,,, where each
x; € {00,01,10,11}. In that case, we can see that |x| = |x1| + |x2| + - - - + |xn| = 2n, which is even.

Now, suppose that = has even length. If it's length is zero, then it is the empty string, which is in S.
Otherwise, it has length 2n for some n > 0, and we can write x in the form xyx2---x,, where each
x; € {00,01,10,11} has length 2. Hence, we can see that x can be built up from the empty string by
applying the recursive step with x1, then 2, and so on up to x,,, which shows that x € S.

Binary strings not containing 10.

Solution:

If the string does not contain 10, then the first 1 in the string can only be followed by more 1s. Hence,
it must be of the form 0"1" for some m,n € N.

Basis: ¢ € S.

Recursive Step: If x € S, then Ox € S and z1 € S.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the
recursive step.

Brief Justification: The empty string satisfies the property, and the recursive step cannot place a 0 after
a 1 since it only adds Os on the left. Hence, every string in S satisfies the property.

In the other direction, from our discussion above, any string of this form can be written as y = 0™1" for
some m,n € N. We can build up the string y from the empty string by applying the rule x — 0z m times
and then applying the rule x +— x1 n times. This shows that the string y is in S.

Binary strings not containing 10 as a substring and having at least as many 1s as 0s.

Solution:

These must be of the form 01" for some m,n € N with m < n. We can ensure that by pairing up the
Os with 1s as they are added:

Basis: ¢ € S.

Recursive Step: If z € S, then 0x1 € S and z1 € S.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the
recursive step.

Brief Justification: As in the previous part, we cannot add a 0 after a 1 because we only add Os at the
front. And since every 0 comes with a 1, we always have at least as many 1s as Os.



In the other direction, from our discussion above, any string of this form can be written as xy, where
x=0m1" and y = 1", since n > m. We can build up the string = from the empty string by applying
the rule  — 0xz1 m times and then produce the string xy by applying the rule z — z1 n — m times,
which shows that the string is in S.

Binary strings containing at most two Os and at most two 1s.

Solution:

This is the set of all binary strings of length at most 4 except for these:
000, 1000, 0100, 0010, 0001, 0000,111,0111,1011,1101,1110,1111

Since this is a finite set, we can define it recursively using only basis elements and no recursive step.



