## CSE 311: Foundations of Computing I

## Section 6: Induction

## 1. Extended Euclidean Algorithm

(a) Find the multiplicative inverse $y$ of $7 \bmod 33$. That is, find $y$ such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.
(b) Now, solve $7 z \equiv 2(\bmod 33)$.

## 2. Induction with Sums: Equality

For any $n \in \mathbb{N}$, define $S_{n}$ to be the sum of the squares of the first $n$ positive integers, or

$$
S_{n}=\sum_{i=1}^{n} i^{2}
$$

For all $n \in \mathbb{N}$, prove that $S_{n}=\frac{1}{6} n(n+1)(2 n+1)$.

## 3. A Strict Inequality

Prove that $6 n+6<2^{n}$ for all $n \geq 6$.

## 4. Another Inequality

Prove that, for all integers $n \geq 1$, if you have numbers $a_{1}, \cdots, a_{n}$ and $b_{1}, \cdots, b_{n}$, with $\forall i \in[n] . a_{i} \leq b_{i}$, then:

$$
\sum_{i=1}^{n} a_{i} \leq \sum_{i=1}^{n} b_{i}
$$

