
CSE 311: Foundations of Computing I
Section 6: Induction Solutions

1. Extended Euclidean Algorithm
(a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that 7y ≡ 1 (mod 33). You should

use the extended Euclidean Algorithm. Your answer should be in the range 0 ≤ y < 33.

Solution:
First, we find the gcd:

gcd(33, 7) = gcd(7, 5) 33 = 7 • 4 + 5 (1)
= gcd(5, 2) 7 = 5 • 1 + 2 (2)
= gcd(2, 1) 5 = 2 • 2 + 1 (3)
= gcd(1, 0) 2 = 1 • 2 + 0 (4)
= 1 (5)

Next, we re-arrange equations (1) - (3) by solving for the remainder:

1 = 5− 2 • 2 (6)
2 = 7− 5 • 1 (7)
5 = 33− 7 • 4 (8)

(9)

Now, we backward substitute into the boxed numbers using the equations:

1 = 5− 2 • 2
= 5− (7− 5 • 1) • 2
= 3 • 5 − 7 • 2
= 3 • (33− 7 • 4)− 7 • 2
= 33 • 3 + 7 • −14

So, 1 = 33 • 3 + 7 • −14. Thus, 33− 14 = 19 is the multiplicative inverse of 7 mod 33.

(b) Now, solve 7z ≡ 2 (mod 33).

Solution:
If z is a solution to that equation, then multiplying both sides by 19, we have z = 1z ≡ 19 · 7z ≡ 19 · 2 ≡
5 (mod 33). Hence, every solution must be of the form z = 5 + 33k for some k ∈ Z.
Furthermore, we can see that every number of this form is a solution since (7(5 + 33k)) mod 33 =
(35 + 7 · 33k) mod 33 = 35 mod 33 = 2 = 2 mod 33.
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2. Induction with Sums: Equality
For any n ∈ N, define Sn to be the sum of the squares of the first n positive integers, or

Sn =
n∑

i=1

i2.

For all n ∈ N, prove that Sn = 1
6n(n+ 1)(2n+ 1).

Solution:
Let P(n) be the statement “Sn = 1

6n(n+ 1)(2n+ 1)” defined for all n ∈ N. We prove that P(n) is true for all
n ∈ N by induction on n.

Base Case. When n = 0, we know the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S0 = 0. Since 1

6(0)(0 + 1)((2)(0) + 1) = 0, we know that P(0) is
true.

Induction Hypothesis. Suppose that P(k) is true for an arbitrary k ∈ N.

Induction Step. Examining Sk+1, we see that

Sk+1 =

k+1∑
i=1

i2 =

k∑
i=1

i2 + (k + 1)2 = Sk + (k + 1)2.

By the induction hypothesis, we know that Sk = 1
6k(k + 1)(2k + 1). Therefore, we can substitute and

rewrite the expression as follows:

Sk+1 = Sk + (k + 1)2

=
1

6
k(k + 1)(2k + 1) + (k + 1)2

= (k + 1)

(
1

6
k(2k + 1) + (k + 1)

)
=

1

6
(k + 1) (k(2k + 1) + 6(k + 1))

=
1

6
(k + 1)

(
2k2 + 7k + 6

)
=

1

6
(k + 1)(k + 2)(2k + 3)

=
1

6
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

Thus, we can conclude that P(k + 1) is true.

Therefore, because the base case and induction step hold, P(n) is true for all n ∈ N by induction.
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3. A Strict Inequality
Prove that 6n+ 6 < 2n for all n ≥ 6.
Solution:
Let P (n) be “6n+ 6 < 2n”. We will prove P (n) for all integers n ≥ 6 by induction.

Base Case (n = 6): 6 · 6 + 6 = 42 < 64 = 26, so P (6) holds.

Induction Hypothesis: Assume that 6j + 6 < 2j for an arbitrary integer j ≥ 6.

Induction Step: Goal: Show 6(j + 1) + 6 < 2j+1

6(j + 1) + 6 = 6j + 6 + 6

< 2j + 6 [Induction Hypothesis]
< 2j + 2j [Since 2j > 6, since j ≥ 6]
< 2 · 2j

< 2j+1,

which shows that P (j + 1) is true.

Conclusion: P (n) holds for all integers n ≥ 6 by induction.
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4. Another Inequality
Prove that, for all integers n ≥ 1, if you have numbers a1, · · · , an and b1, · · · , bn, with ∀i ∈ [n]. ai ≤ bi, then:

n∑
i=1

ai ≤
n∑

i=1

bi

Solution:
Let P(n) be the statement “if a1 ≤ b1, a2 ≤ b2, . . . , an ≤ bn, then

∑n
i=1 ai ≤

∑n
i=1 bi”. We prove that P(n)

is true for all integers n ≥ 1 by induction on n:

Base Case (n = 1). Suppose a1 ≤ b1. Using the definition of summation, we can see that

n∑
i=1

ai =

1∑
i=1

ai = a1 ≤ b1 =

1∑
i=1

bi =

n∑
i=1

bi,

so the claim is true for n = 1.

Induction Hypothesis. Suppose that P (k) holds for an arbitrary integer k ≥ 1.

Induction Step. Suppose that a1 ≤ b1, a2 ≤ b2, . . . , ak+1 ≤ bk+1. Then, we can calculate

k+1∑
i=1

ai =

k∑
i=1

ai + ak+1 [Splitting the summation]

≤
k∑

i=1

bi + ak+1 [By IH]

≤
k∑

i=1

bi + bk+1 [By Assumption]

≤
k+1∑
i=1

bi [Algebra]

This shows P (k + 1).

Therefore, we have shown the claim for all n ∈ N by induction.
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