CSE 311: Foundations of Computing |

Section 6: Induction Solutions

1. Extended Euclidean Algorithm

(a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that 7y = 1 (mod 33). You should

use the extended Euclidean Algorithm. Your answer should be in the range 0 < y < 33.

Solution:

First, we find the gcd:

33=[7]e4+5
7=[5]e1+2
5=[2]e2+1
2=1e2+0

Next, we re-arrange equations (1) - (3) by solving for the remainder:

1=5-[2]e2
2=7—[5]e1
5=33-[7]e4

Now, we backward substitute into the boxed numbers using the equations:

1=5-[2]e2
—5—(7—[5]e1)e2
—3e[5|-Te2
—3e(33—[7]e4)—Te2

=333 +7e—14

So,1=33e3 +o —14. Thus, 33 — 14 = 19 is the multiplicative inverse of 7 mod 33.

(b) Now, solve 7z = 2 (mod 33).

Solution:

e A~ A~ A~ ~~
— ~— ~— — — ~— — N

If z is a solution to that equation, then multiplying both sides by 19, we have z =12 =19-72 =19-2 =

5 (mod 33). Hence, every solution must be of the form z = 5 + 33k for some k € Z.

Furthermore, we can see that every number of this form is a solution since (7(5 4 33k)) mod 33 =

(354 7-33k) mod 33 = 35 mod 33 = 2 = 2 mod 33.



2. Induction with Sums: Equality

For any n € N, define S;, to be the sum of the squares of the first n positive integers, or

n
S, = § i2.
=1

For all n € N, prove that S, = ¢n(n+1)(2n + 1).
Solution:

Let P(n) be the statement “S,, = in(n+1)(2n+1)" defined for all n € N. We prove that P(n) is true for all
n € N by induction on n.

Base Case. When n = 0, we know the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, Sy = 0. Since £(0)(0 + 1)((2)(0) + 1) = 0, we know that P(0) is
true.

Induction Hypothesis. Suppose that P(k) is true for an arbitrary k € N.
Induction Step. Examining Si41, we see that

k+1 k
Sprr =Y 7= i+ (k+1)% =S+ (k+1)°
=1 =1

By the induction hypothesis, we know that Sj = ék(k + 1)(2k + 1). Therefore, we can substitute and
rewrite the expression as follows:

Ska1 =Sk + (k+1)°

- ék(k +1)(2k + 1) + (k + 1)
=(k+1) (ék(% +1)+ (k+ 1))

- é(k; +1) (k(2k + 1) + 6(k + 1))
1

=(k+1) (2k% + Tk + 6)

_ é(k: +1)(k + 2)(2k + 3)

_ %(k F1)((k+1)+ 12k +1) + 1)

Thus, we can conclude that P(k + 1) is true.

Therefore, because the base case and induction step hold, P(n) is true for all n € N by induction.



3. A Strict Inequality

Prove that 6n + 6 < 2™ for all n > 6.

Solution:

Let P(n) be "6n + 6 < 2™". We will prove P(n) for all integers n > 6 by induction.

Base Case (n =6): 6-6+6 =42 < 64 = 25, so P(6) holds.

Induction Hypothesis: Assume that 6j + 6 < 27 for an arbitrary integer j > 6.

Induction Step: | Goal: Show 6(j + 1) 46 < 2/*!

6(j+1)+6=6j+6+6

<246 [Induction Hypothesis]
<4 [Since 27 > 6, since j > 6]
<2-2

<9It

which shows that P(j + 1) is true.

Conclusion: P(n) holds for all integers n > 6 by induction.



4. Another Inequality

Prove that, for all integers n > 1, if you have numbers ay,--- ,a, and by,--- , by, with Vi € [n]. a; < b;, then:
n n
D<) b
i=1 i=1
Solution:
Let P(n) be the statement “if a; < by, ag < by, ..., ap < by, then Y7 a; < >, b;". We prove that P(n)

is true for all integers n > 1 by induction on n:

Base Case (n = 1). Suppose a; < by. Using the definition of summation, we can see that

n 1 1 n
Zai ZZ%‘ =a; <b :Zbizzbiy
i—1 i—1 i1 i=1

so the claim is true for n = 1.

Induction Hypothesis. Suppose that P(k) holds for an arbitrary integer k£ > 1.

Induction Step. Suppose that a; < by, as < bg, ..., agr1 < bgr1. Then, we can calculate
k+1 k
Z a; = Z a; + agi1 [Splitting the summation]
i=1 i=1
k
< Z bi + agy1 [By IH]
i=1
k
< Z bi + br+1 [By Assumption]
i=1
k+1
< Z bi [Algebra]
i=1

This shows P(k + 1).

Therefore, we have shown the claim for all n € N by induction.



