CSE 311: Foundations of Computing I

Section 6: Induction Solutions

1. Extended Euclidean Algorithm

(a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y < 33$.

Solution:

First, we find the gcd:

$$gcd(33,7) = gcd(7,5)$$
 $33 = \boxed{7} \bullet 4 + 5$ (1)

$$= \gcd(5,2)$$
 $7 = 5 \cdot 1 + 2$ (2)

- $= \gcd(2,1) \qquad \qquad 5 = \boxed{2} \bullet 2 + 1 \tag{3}$
- $= \gcd(1,0)$ $2 = 1 \bullet 2 + 0$ (4)
- =1 (5)

Next, we re-arrange equations (1) - (3) by solving for the remainder:

$$1 = 5 - \boxed{2} \bullet 2 \tag{6}$$

$$2 = 7 - \boxed{5} \bullet 1 \tag{7}$$

$$5 = 33 - \boxed{7} \bullet 4 \tag{8}$$

(9)

Now, we backward substitute into the boxed numbers using the equations:

$$1 = 5 - 2 \bullet 2$$

= 5 - (7 - 5 \cdot 1) \epsilon 2
= 3 \cdot 5 - 7 \epsilon 2
= 3 \cdot (33 - 7 \cdot 4) - 7 \epsilon 2
= 33 \cdot 3 + 7 \epsilon - 14

So, $1 = 33 \bullet 3 + 7 \bullet -14$. Thus, 33 - 14 = 19 is the multiplicative inverse of 7 mod 33.

(b) Now, solve $7z \equiv 2 \pmod{33}$.

Solution:

If z is a solution to that equation, then multiplying both sides by 19, we have $z = 1z \equiv 19 \cdot 7z \equiv 19 \cdot 2 \equiv 5 \pmod{33}$. Hence, every solution must be of the form z = 5 + 33k for some $k \in \mathbb{Z}$.

Furthermore, we can see that every number of this form is a solution since $(7(5+33k)) \mod 33 = (35+7\cdot 33k) \mod 33 = 35 \mod 33 = 2 = 2 \mod 33$.

2. Induction with Sums: Equality

For any $n \in \mathbb{N}$, define S_n to be the sum of the squares of the first n positive integers, or

$$S_n = \sum_{i=1}^n i^2.$$

For all $n \in \mathbb{N}$, prove that $S_n = \frac{1}{6}n(n+1)(2n+1)$. Solution:

Let P(n) be the statement " $S_n = \frac{1}{6}n(n+1)(2n+1)$ " defined for all $n \in \mathbb{N}$. We prove that P(n) is true for all $n \in \mathbb{N}$ by induction on n.

Base Case. When n = 0, we know the sum of the squares of the first n positive integers is the sum of no terms, so we have a sum of 0. Thus, $S_0 = 0$. Since $\frac{1}{6}(0)(0+1)((2)(0)+1) = 0$, we know that P(0) is true.

Induction Hypothesis. Suppose that P(k) is true for an arbitrary $k \in \mathbb{N}$.

Induction Step. Examining S_{k+1} , we see that

$$S_{k+1} = \sum_{i=1}^{k+1} i^2 = \sum_{i=1}^{k} i^2 + (k+1)^2 = S_k + (k+1)^2.$$

By the induction hypothesis, we know that $S_k = \frac{1}{6}k(k+1)(2k+1)$. Therefore, we can substitute and rewrite the expression as follows:

$$S_{k+1} = S_k + (k+1)^2$$

= $\frac{1}{6}k(k+1)(2k+1) + (k+1)^2$
= $(k+1)\left(\frac{1}{6}k(2k+1) + (k+1)\right)$
= $\frac{1}{6}(k+1)(k(2k+1) + 6(k+1))$
= $\frac{1}{6}(k+1)(2k^2 + 7k + 6)$
= $\frac{1}{6}(k+1)(k+2)(2k+3)$
= $\frac{1}{6}(k+1)((k+1) + 1)(2(k+1) + 1)$

Thus, we can conclude that P(k+1) is true.

Therefore, because the base case and induction step hold, P(n) is true for all $n \in \mathbb{N}$ by induction.

3. A Strict Inequality

Prove that $6n + 6 < 2^n$ for all $n \ge 6$.

Solution:

Let P(n) be " $6n + 6 < 2^n$ ". We will prove P(n) for all integers $n \ge 6$ by induction.

Base Case (n = 6): $6 \cdot 6 + 6 = 42 < 64 = 2^6$, so P(6) holds.

Induction Hypothesis: Assume that $6j + 6 < 2^j$ for an arbitrary integer $j \ge 6$.

Induction Step: Goal: Show $6(j+1) + 6 < 2^{j+1}$ 6(j+1) + 6 = 6j + 6 + 6 $< 2^{j} + 6$ [Induction Hypothesis] $< 2^{j} + 2^{j}$ [Since $2^{j} > 6$, since $j \ge 6$] $< 2 \cdot 2^{j}$ $< 2^{j+1}$,

which shows that P(j+1) is true.

Conclusion: P(n) holds for all integers $n \ge 6$ by induction.

4. Another Inequality

Prove that, for all integers $n \ge 1$, if you have numbers a_1, \dots, a_n and b_1, \dots, b_n , with $\forall i \in [n]$. $a_i \le b_i$, then:

$$\sum_{i=1}^{n} a_i \le \sum_{i=1}^{n} b_i$$

Solution:

Let P(n) be the statement "if $a_1 \leq b_1$, $a_2 \leq b_2$, ..., $a_n \leq b_n$, then $\sum_{i=1}^n a_i \leq \sum_{i=1}^n b_i$ ". We prove that P(n) is true for all integers $n \geq 1$ by induction on n:

Base Case (n = 1). Suppose $a_1 \leq b_1$. Using the definition of summation, we can see that

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{1} a_i = a_1 \le b_1 = \sum_{i=1}^{1} b_i = \sum_{i=1}^{n} b_i$$

so the claim is true for n = 1.

Induction Hypothesis. Suppose that P(k) holds for an arbitrary integer $k \ge 1$.

Induction Step. Suppose that $a_1 \leq b_1$, $a_2 \leq b_2$, ..., $a_{k+1} \leq b_{k+1}$. Then, we can calculate

$$\sum_{i=1}^{k+1} a_i = \sum_{i=1}^k a_i + a_{k+1}$$
 [Splitting the summation]
$$\leq \sum_{i=1}^k b_i + a_{k+1}$$
 [By IH]
$$\leq \sum_{i=1}^k b_i + b_{k+1}$$
 [By Assumption]
$$\leq \sum_{i=1}^{k+1} b_i$$
 [Algebra]

This shows P(k+1).

Therefore, we have shown the claim for all $n \in \mathbb{N}$ by induction.