
CSE 311: Foundations of Computing I
Section 5: Number Theory

1. Modular Arithmetic
(a) Consider the following claim in the domain of integers: if a | b, b | a, and a 6= 0, then a = b or a = −b.

Here is a formal proof of the claim:

1. ((a | b) ∧ (b | a)) ∧ (a 6= 0) Given
2. (a | b) ∧ (b | a) Elim ∧: 1
3. a | b Elim ∧: 2
4. ∃k (ka = b) Def of “|”: 3
5. ja = b Elim ∃: 4, special j
6. b | a Elim ∧: 2
7. ∃k (kb = a) Def of “|”: 6
8. kb = a Elim ∃: 7, special k
9. a = kb = k(ja) = (kj) · a Algebra: 8, 5
10. a 6= 0 Elim ∧: 1
11. kj = 1 Algebra (division): 9, 10
12. (j = 1 ∧ k = 1) ∨ (j = −1 ∧ k = −1) Prop of integer mult: 11

13.1. j = 1 ∧ k = 1 Assumption
13.2. k = 1 Elim ∧: 13.1
13.3. a = kb = b Algebra: 8, 13.2
13.4. a = b ∨ a = −b Intro ∨: 13.3

13. (j = 1 ∧ k = 1) → (a = b ∨ a = −b) Direct Proof
14.1. ¬(j = 1 ∧ k = 1) Assumption
14.2. j = −1 ∧ k = −1 Elim ∨: 12, 14.1
14.3. k = −1 Elim ∧: 14.2
14.4. a = kb = −b Algebra: 8, 14.3
14.5. a = b ∨ a = −b Intro ∨: 14.4

14. ¬(j = 1 ∧ k = 1) → (a = b ∨ a = −b) Direct Proof
15. a = b ∨ a = −b Proof by Cases: 13, 14

Translate this formal proof to English.

(b) Consider the following claim in the domain of integers: if n | m, with n,m > 1, and a ≡ b (mod m),
then we must have a ≡ b (mod n).
Here is an English proof of that claim...
Proof: Suppose n | m, with n,m > 1, and a ≡ b (mod m). By definition of divides, the first part says
m = kn for some k ∈ Z. By definition of congruence, the second part says m | a− b, which means that
a− b = mj for some j ∈ Z. Combining the two equations, we have a− b = mj = (kn)j = (kj)n. The
latter says that a ≡ b (mod n), by the definition of congruence. �

Translate this English proof into a formal proof.
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2. Perfect Squares
Let n be a positive integer. Consider the following claim: if n2 + 1 is a square, then n is even.

Here are a few different proofs of the claim...

Proof 1: There are no positive numbers n such that n2 + 1 is a square, so the implication is true because it’s
premise is false. �

Proof 2: The claim supposes that n2 + 1 is a square, but n2 is also a square by definition, so the premise
asks us to suppose that we have two squares (n2 and n2 + 1) that differ by 1. However, if we take a list of all
positive integers 1, 2, 3, 4, . . . and square them all, we get 1, 4, 9, 16, . . . , and we can see that the gap between
adjacent numbers is increasing, so the smallest gap is between the first two numbers, and it is just 3. Hence,
the premise cannot be true. This means that the claim, however, is true, since its premise is false. �

Proof 3: Suppose that n2 + 1 is a square. Then, by definition, we have n2 + 1 = k2 for some k ∈ Z. Now, to
establish a contradiction, suppose that n is odd. Then, n = 2j + 1 for some j ∈ Z, and we have

n2 + 1 = (2j + 1)2 + 1 = 4j2 + 4j + 1 + 1 = 4(j2 + j) + 2.

This shows that (n2 + 1) mod 4 = 2, by definition, and similarly (n2 + 1) mod 2 = 0.
Now, if k is even, then we have k2 = (2`)2 = 4`2 for some ` ∈ Z. This means k2 mod 4 = 0, contradicting

that k2 mod 4 = (n2 + 1) mod 4 = 2. On the other hand, if k is odd, then we have k2 = (2` + 1)2 =
4`2 + 4` + 1 = 2(2`2 + 2`) + 1 for some ` ∈ Z. But this says that k2 mod 2 = 1, contradicting that
k2 mod 2 = (n2 + 1) mod 2 = 0. In either case, we have a contradiction. �

(a) Which of these English proofs would you prefer to translate to a formal proof? Do so.

(b) Why is it helpful, in Proof 3, to write rewrite 4j2 + 4j + 1 + 1 as 4(j2 + j) + 2?

(c) Would it be helpful to note, at the beginning of the second paragraph of Proof 3, that we are going to
complete the proof (finding a contradiction) by cases?

3. Casting Out Nines
Let n ∈ N. Write an English proof that, if n ≡ 0 (mod 9), then the sum of the digits of n is a multiple of 9.

You may also use without proof the fact that we can substitute a congruent value into another congruence
and the results is still true. E.g, if we have a ≡ 7 (mod m) and also a+ b ≡ 3(b− a) (mod m), then we can
substitute for a in the second congruence to get 7 + b ≡ 3(b− 7) (mod m).

Hint: apply the fact that every integer has a decimal expansion.
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