CSE 311: Foundations of Computing I

Section 5: Number Theory

1. Modular Arithmetic

(a) Consider the following claim in the domain of integers: if $a|b, b| a$, and $a \neq 0$, then $a=b$ or $a=-b$. Here is a formal proof of the claim:

1.	$((a \mid b) \wedge(b \mid a)) \wedge(a \neq 0)$	Given
2.	$(a \mid b) \wedge(b \mid a)$	Elim \wedge : 1
3.	$a \mid b$	$\operatorname{Elim} \wedge: 2$
4.	$\exists k(k a=b)$	Def of "\|": 3
5.	$j a=b$	Elim \exists : 4, special j
6.	$b \mid a$	Elim \wedge : 2
7.	$\exists k(k b=a)$	Def of "\|": 6
8.	$k b=a$	Elim \exists : 7, special k
9.	$a=k b=k(j a)=(k j) \cdot a$	Algebra: 8, 5
10.	$a \neq 0$	Elim \wedge : 1
11.	$k j=1$	Algebra (division): 9, 10
12.	$(j=1 \wedge k=1) \vee(j=-1 \wedge k=-1)$	Prop of integer mult: 11
	13.1. $j=1 \wedge k=1 \quad$ Assumption	
	13.2. $k=1 \quad$ Elim \wedge : 13.1	
	13.3. $a=k b=b \quad$ Algebra: 8, 13.2	
	13.4. $a=b \vee a=-b$ Intro \vee : 13.3	
13.	$(j=1 \wedge k=1) \rightarrow(a=b \vee a=-b)$	Direct Proof
	14.1. $\neg(j=1 \wedge k=1) \quad$ Assumption	
	14.2. $j=-1 \wedge k=-1 \quad$ Elim $\vee: 12,14.1$	
	14.3. $k=-1 \quad$ Elim $\wedge: 14.2$	
	14.4. $a=k b=-b \quad$ Algebra: 8, 14.3	
	14.5. $a=b \vee a=-b \quad$ Intro \vee : 14.4	
14.	$\neg(j=1 \wedge k=1) \rightarrow(a=b \vee a=-b)$	Direct Proof
15.	$a=b \vee a=-b$	Proof by Cases: 13, 14

Translate this formal proof to English.
(b) Consider the following claim in the domain of integers: if $n \mid m$, with $n, m>1$, and $a \equiv b(\bmod m)$, then we must have $a \equiv b(\bmod n)$.
Here is an English proof of that claim...
Proof: Suppose $n \mid m$, with $n, m>1$, and $a \equiv b(\bmod m)$. By definition of divides, the first part says $m=k n$ for some $k \in \mathbb{Z}$. By definition of congruence, the second part says $m \mid a-b$, which means that $a-b=m j$ for some $j \in \mathbb{Z}$. Combining the two equations, we have $a-b=m j=(k n) j=(k j) n$. The latter says that $a \equiv b(\bmod n)$, by the definition of congruence.
Translate this English proof into a formal proof.

2. Perfect Squares

Let n be a positive integer. Consider the following claim: if $n^{2}+1$ is a square, then n is even.
Here are a few different proofs of the claim...
Proof 1: There are no positive numbers n such that $n^{2}+1$ is a square, so the implication is true because it's premise is false.

Proof 2: The claim supposes that $n^{2}+1$ is a square, but n^{2} is also a square by definition, so the premise asks us to suppose that we have two squares $\left(n^{2}\right.$ and $\left.n^{2}+1\right)$ that differ by 1 . However, if we take a list of all positive integers $1,2,3,4, \ldots$ and square them all, we get $1,4,9,16, \ldots$, and we can see that the gap between adjacent numbers is increasing, so the smallest gap is between the first two numbers, and it is just 3 . Hence, the premise cannot be true. This means that the claim, however, is true, since its premise is false.

Proof 3: Suppose that $n^{2}+1$ is a square. Then, by definition, we have $n^{2}+1=k^{2}$ for some $k \in \mathbb{Z}$. Now, to establish a contradiction, suppose that n is odd. Then, $n=2 j+1$ for some $j \in \mathbb{Z}$, and we have

$$
n^{2}+1=(2 j+1)^{2}+1=4 j^{2}+4 j+1+1=4\left(j^{2}+j\right)+2 .
$$

This shows that $\left(n^{2}+1\right) \bmod 4=2$, by definition, and similarly $\left(n^{2}+1\right) \bmod 2=0$.
Now, if k is even, then we have $k^{2}=(2 \ell)^{2}=4 \ell^{2}$ for some $\ell \in \mathbb{Z}$. This means $k^{2} \bmod 4=0$, contradicting that $k^{2} \bmod 4=\left(n^{2}+1\right) \bmod 4=2$. On the other hand, if k is odd, then we have $k^{2}=(2 \ell+1)^{2}=$ $4 \ell^{2}+4 \ell+1=2\left(2 \ell^{2}+2 \ell\right)+1$ for some $\ell \in \mathbb{Z}$. But this says that $k^{2} \bmod 2=1$, contradicting that $k^{2} \bmod 2=\left(n^{2}+1\right) \bmod 2=0$. In either case, we have a contradiction.
(a) Which of these English proofs would you prefer to translate to a formal proof? Do so.
(b) Why is it helpful, in Proof 3 , to write rewrite $4 j^{2}+4 j+1+1$ as $4\left(j^{2}+j\right)+2$?
(c) Would it be helpful to note, at the beginning of the second paragraph of Proof 3, that we are going to complete the proof (finding a contradiction) by cases?

3. Casting Out Nines

Let $n \in \mathbb{N}$. Write an English proof that, if $n \equiv 0(\bmod 9)$, then the sum of the digits of n is a multiple of 9 .
You may also use without proof the fact that we can substitute a congruent value into another congruence and the results is still true. E.g, if we have $a \equiv 7(\bmod m)$ and also $a+b \equiv 3(b-a)(\bmod m)$, then we can substitute for a in the second congruence to get $7+b \equiv 3(b-7)(\bmod m)$.

Hint: apply the fact that every integer has a decimal expansion.

