
CSE 311: Foundations of Computing I
Section 5: Number Theory Solutions

1. Modular Arithmetic
(a) Consider the following claim in the domain of integers: if a | b, b | a, and a 6= 0, then a = b or a = −b.

Here is a formal proof of the claim:

1. ((a | b) ∧ (b | a)) ∧ (a 6= 0) Given
2. (a | b) ∧ (b | a) Elim ∧: 1
3. a | b Elim ∧: 2
4. ∃k (ka = b) Def of “|”: 3
5. ja = b Elim ∃: 4, special j
6. b | a Elim ∧: 2
7. ∃k (kb = a) Def of “|”: 6
8. kb = a Elim ∃: 7, special k
9. a = kb = k(ja) = (kj) · a Algebra: 8, 5
10. a 6= 0 Elim ∧: 1
11. kj = 1 Algebra (division): 9, 10
12. (j = 1 ∧ k = 1) ∨ (j = −1 ∧ k = −1) Prop of integer mult: 11

13.1. j = 1 ∧ k = 1 Assumption
13.2. k = 1 Elim ∧: 13.1
13.3. a = kb = b Algebra: 8, 13.2
13.4. a = b ∨ a = −b Intro ∨: 13.3

13. (j = 1 ∧ k = 1) → (a = b ∨ a = −b) Direct Proof
14.1. ¬(j = 1 ∧ k = 1) Assumption
14.2. j = −1 ∧ k = −1 Elim ∨: 12, 14.1
14.3. k = −1 Elim ∧: 14.2
14.4. a = kb = −b Algebra: 8, 14.3
14.5. a = b ∨ a = −b Intro ∨: 14.4

14. ¬(j = 1 ∧ k = 1) → (a = b ∨ a = −b) Direct Proof
15. a = b ∨ a = −b Proof by Cases: 13, 14

Translate this formal proof to English.

Solution:
Suppose a | b, b | a, and a 6= 0. By the definition of divides, we have b = ja and a = kb for some integers
j, k. Combining these equations, we see that a = kb = k(ja) = (kj)a. Since a 6= 0, we can divide both
sides by a to see that kj = 1.
By the properties of integer multiplication, kj = 1 is only possible if j = k = 1 or j = k = −1. If the
first holds, then we have a = kb = b. If the second holds, then we have a = kb = −b. Hence, in either
case, we have a = b or a = −b.

(b) Consider the following claim in the domain of integers: if n | m, with n,m > 1, and a ≡ b (mod m),
then we must have a ≡ b (mod n).
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Here is an English proof of that claim...
Proof: Suppose n | m, with n,m > 1, and a ≡ b (mod m). By definition of divides, the first part says
m = kn for some k ∈ Z. By definition of congruence, the second part says m | a− b, which means that
a− b = mj for some j ∈ Z. Combining the two equations, we have a− b = mj = (kn)j = (kj)n. The
latter says that a ≡ b (mod n), by the definition of congruence. �

Translate this English proof into a formal proof.

Solution:
1. (((n | m) ∧ (n > 1)) ∧ (m > 1)) ∧ (a ≡ b (modm)) Given
2. ((n | m) ∧ (n > 1)) ∧ (m > 1) Elim ∧: 1
3. (n | m) ∧ (n > 1) Elim ∧: 2
4. n | m Elim ∧: 3
5. n > 1 Elim ∧: 3
6. m > 1 Elim ∧: 2
7. a ≡ b (modm) Elim ∧: 1
8. ∃k (kn = m) Def of “|”: 4
9. kn = m Elim ∃: 8, special k
10. m | a− b Def of ≡: 7
11. ∃k (km = a− b) Def of “|”: 10
12. jm = a− b Elim ∃: 11, special j
13. a− b = mj = (kn)j = (kj)n Algebra: 12, 9
14. ∃k (kn = a− b) Intro ∃: 13
15. n | a− b Def of “|”: 14
16. a ≡ b (mod n) Def of ≡: 15

2. Perfect Squares
Let n be a positive integer. Consider the following claim: if n2 + 1 is a square, then n is even.

Here are a few different proofs of the claim...

Proof 1: There are no positive numbers n such that n2 + 1 is a square, so the implication is true because it’s
premise is false. �

Proof 2: The claim supposes that n2 + 1 is a square, but n2 is also a square by definition, so the premise
asks us to suppose that we have two squares (n2 and n2 + 1) that differ by 1. However, if we take a list of all
positive integers 1, 2, 3, 4, . . . and square them all, we get 1, 4, 9, 16, . . . , and we can see that the gap between
adjacent numbers is increasing, so the smallest gap is between the first two numbers, and it is just 3. Hence,
the premise cannot be true. This means that the claim, however, is true, since its premise is false. �

Proof 3: Suppose that n2 + 1 is a square. Then, by definition, we have n2 + 1 = k2 for some k ∈ Z. Now, to
establish a contradiction, suppose that n is odd. Then, n = 2j + 1 for some j ∈ Z, and we have

n2 + 1 = (2j + 1)2 + 1 = 4j2 + 4j + 1 + 1 = 4(j2 + j) + 2.

This shows that (n2 + 1) mod 4 = 2, by definition, and similarly (n2 + 1) mod 2 = 0.
Now, if k is even, then we have k2 = (2`)2 = 4`2 for some ` ∈ Z. This means k2 mod 4 = 0, contradicting

that k2 mod 4 = (n2 + 1) mod 4 = 2. On the other hand, if k is odd, then we have k2 = (2` + 1)2 =
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4`2 + 4` + 1 = 2(2`2 + 2`) + 1 for some ` ∈ Z. But this says that k2 mod 2 = 1, contradicting that
k2 mod 2 = (n2 + 1) mod 2 = 0. In either case, we have a contradiction. �

(a) Which of these English proofs would you prefer to translate to a formal proof? Do so.

Solution:
Neither proof 1 or proof 2 is helpful in trying to write a formal proof. Here is a translation of Proof 3:

1. Square(n2 + 1) Given
2. ∃k (n2 + 1 = k2) Def of Square: 1
3. n2 + 1 = k2 Elim ∃: 2, special k

4.1. Odd(n) Assumption
4.2. ∃j (n = 2j + 1) Def of Odd: 4.1
4.3. n = 2j + 1 Elim ∃: 4.2
4.4. n2 + 1 = (2j + 1)2 + 1 = 4(j2 + j) + 2 Algebra: 4.3
4.5. (n2 + 1) mod 4 = 2 Def of mod: 4.4
4.6. (n2 + 1) mod 2 = 0 Def of mod: 4.4

4.7.1. Even(k) Assumption
4.7.2. ∃` (k = 2`) Def of Even: 4.7.1
4.7.3. k = 2` Elim `: 4.7.2
4.7.4. k2 = (2`)2 = 4`2 + 0 Algebra: 4.7.3
4.7.5. k2 mod 4 = 0 Def of mod: 4.7.4
4.7.6. (n2 + 1) mod 4 = 0 Substitute: 3, 4.7.5
4.7.6. F Negation: 4.7.6, 4.5

4.7. Even(k) → F Direct Proof
4.8.1. ¬Even(k) Assumption
4.8.2. Odd(k) ∨ Even(k) Prop of Integers
4.8.3. Odd(k) Elim ∨: 4.8.1, 4.8.2
4.8.4. ∃` (k = 2`+ 1) Def of Odd: 4.8.3
4.8.5. k = 2`+ 1 Elim `: 4.8.4
4.8.6. k2 = 2(2`2 + 2`) + 1 Algebra: 4.8.5
4.8.7. k2 mod 2 = 1 Def of mod: 4.8.6
4.8.8. (n2 + 1) mod 2 = 1 Substitute: 3, 4.8.6
4.8.9. F Negation: 4.8.8, 4.5

4.8. ¬Even(k) → F Direct Proof
4.9. F Proof by Cases: 4.4, 4.5

4. Odd(n) → F Direct Proof
5. ¬Odd(n) ∨ F Law of Implication: 4
6. ¬Odd(n) Identity: 5
7. Odd(n) ∨ Even(n) Prop of Integers
8. Even(n) Elim ∨: 6, 7

(b) Why is it helpful, in Proof 3, to write rewrite 4j2 + 4j + 1 + 1 as 4(j2 + j) + 2?
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Solution:
The write hand side is of the form 4q + r with 0 ≤ r < 4, we get immediately that this value mod 4 is
equal to 2.

(c) Would it be helpful to note, at the beginning of the second paragraph of Proof 3, that we are going to
complete the proof (finding a contradiction) by cases?

Solution:
I think this would make it easier to read. In general, for English proofs, telling the reader where you are
going beforehand is helpful.

3. Casting Out Nines
Let n ∈ N. Write an English proof that, if n ≡ 0 (mod 9), then the sum of the digits of n is a multiple of 9.

You may also use without proof the fact that we can substitute a congruent value into another congruence
and the results is still true. E.g, if we have a ≡ 7 (mod m) and also a+ b ≡ 3(b− a) (mod m), then we can
substitute for a in the second congruence to get 7 + b ≡ 3(b− 7) (mod m).

Hint: apply the fact that every integer has a decimal expansion.
Solution:
As we saw in lecture, if a ≡ b (mod m), then a+ c ≡ b+ c (mod m) and ac ≡ bc (mod m). More generally,
we can replace a with b in any expression involving only addition (or subtraction) and multiplication, and the
result will still be congruent modulo m. We will use that fact to complete this proof.

Suppose that n ≡ 0 (mod 9). Write n in terms of its decimal digits as n = x0+10x1+102x2+ · · ·+10mxm.
The latter is an expression using only addition and multiplication, so we can replace all occurrences of 10 with
any value congruent to it and the result will be congruent to n. Since 10 = 1 · 9 + 1, we see that 10 ≡ 1
(mod 9), so we can substitute 1 for 10 if we work mod 9.

Carrying out that calculation gives us:

0 ≡ n (mod 9) Given
≡ x0 + 10x1 + 102x2 + · · ·+ 10mxm (mod 9) Definition of xi’s
≡ x0 + 1x1 + 12x2 + · · ·+ 1mxm (mod 9) Substitute 1 for 10
≡ x0 + 1x1 + 12x2 + · · ·+ 1mxm (mod 9) 1k = 1 for all k ≥ 1

≡ x0 + x1 + x2 + · · ·+ xm (mod 9) 1 is the multiplicative identity

The final line is the sum of the digits of n, taken modulo 9. Since it is congruent to 0 modulo 9, this says that
the sum is a multiple of 9.
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