CSE 311: Foundations of Computing I

Section 2: Equivalences and Boolean Algebra

1. Equivalences

Prove that each of the following pairs of propositional formulae are equivalent using propositional equivalences.
(a) $\neg p \rightarrow(q \rightarrow r) \quad q \rightarrow(p \vee r)$
(b) $p \leftrightarrow q$
$(p \wedge q) \vee(\neg p \wedge \neg q)$

2. Non-equivalence

Prove that the following pairs of propositional formulae are not equivalent by finding inputs they differ on.
(a) $p \rightarrow q$

$$
q \rightarrow p
$$

(b) $p \rightarrow(q \wedge r)$
$(p \rightarrow q) \wedge r$

3. Boolean Algebra

For each of the following parts, write the logical expression using boolean algebra operators. Then, simplify it using axioms and theorems of boolean algebra.
(a) $\neg p \vee(\neg q \vee(p \wedge q))$
(b) $\neg(p \vee(q \wedge p))$

4. Properties of XOR

Like \wedge and \vee, the \oplus operator (exclusive or) has many interesting properties. For example, it is easy to verify with a truth table that \oplus is also associative. In this problem, we will prove some additional properties of \oplus.

Use equivalence chains to prove each of the facts stated below. For this problem only, you may also use the equivalence

$$
p \oplus q \equiv(p \wedge \neg q) \vee(\neg p \wedge q)
$$

which you may cite as "Definition of \oplus ". This equivalence allows you to translate \oplus into an expression involving only \wedge, \vee, and \neg, so that the standard equivalences can then be applied.
(a) $p \oplus q \equiv q \oplus p$ (Commutativity)
(b) $p \oplus p \equiv \mathrm{~F}$ and $p \oplus \neg p \equiv \mathrm{~T}$
(c) $p \oplus \mathrm{~F} \equiv p$ and $p \oplus \mathrm{~T} \equiv \neg p$
(d) $(\neg p) \oplus q \equiv \neg(p \oplus q) \equiv p \oplus(\neg q)$. l.e., negating one of the inputs negates the overall expression.

