CSE 311: Foundations of Computing I

Section 2: Equivalences and Boolean Algebra

1. Equivalences

Prove that each of the following pairs of propositional formulae are equivalent using propositional equivalences.

(a)
$$\neg p \rightarrow (q \rightarrow r)$$
 $q \rightarrow (p \lor r)$
(b) $p \leftrightarrow q$ $(p \land q) \lor (\neg p \land \neg q)$

2. Non-equivalence

Prove that the following pairs of propositional formulae are not equivalent by finding inputs they differ on.

(a) $p \rightarrow q$	$q \rightarrow p$
(b) $p \rightarrow (q \wedge r)$	$(p \to q) \wedge r$

3. Boolean Algebra

For each of the following parts, write the logical expression using boolean algebra operators. Then, simplify it using axioms and theorems of boolean algebra.

(a)
$$\neg p \lor (\neg q \lor (p \land q))$$

(b) $\neg (p \lor (q \land p))$

4. Properties of XOR

Like \land and \lor , the \oplus operator (exclusive or) has many interesting properties. For example, it is easy to verify with a truth table that \oplus is also associative. In this problem, we will prove some additional properties of \oplus .

Use equivalence chains to prove each of the facts stated below. For this problem only, you may also use the equivalence

$$p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$$

which you may cite as "Definition of \oplus ". This equivalence allows you to translate \oplus into an expression involving only \land , \lor , and \neg , so that the standard equivalences can then be applied.

- (a) $p \oplus q \equiv q \oplus p$ (Commutativity)
- (b) $p \oplus p \equiv \mathsf{F}$ and $p \oplus \neg p \equiv \mathsf{T}$
- (c) $p \oplus \mathsf{F} \equiv p$ and $p \oplus \mathsf{T} \equiv \neg p$
- (d) $(\neg p) \oplus q \equiv \neg (p \oplus q) \equiv p \oplus (\neg q)$. I.e., negating one of the inputs negates the overall expression.