## CSE 311: Foundations of Computing I

## Section 2: Equivalences and Boolean Algebra Solutions

## 1. Equivalences

Prove that each of the following pairs of propositional formulae are equivalent using propositional equivalences.
(a) $\neg p \rightarrow(q \rightarrow r) \quad q \rightarrow(p \vee r)$

## Solution:

$$
\begin{array}{lll} 
& \neg p \rightarrow(q \rightarrow r) & \equiv \neg \neg p \vee(q \rightarrow r) \\
& & \text { [Law of Implication] } \\
& \equiv p \vee(q \rightarrow r) & \\
& \equiv p \vee(\neg q \vee r) & \text { [Double Negation] } \\
& \equiv(p \vee \neg q) \vee r & \text { [Law of Implication] } \\
& \equiv(\neg q \vee p) \vee r & \text { [Associativity] } \\
& \equiv \neg q \vee(p \vee r) & \text { [Commutativity] } \\
& \equiv q \rightarrow(p \vee r) & \text { [Associativity] } \\
& & \\
\text { (b) } p \leftrightarrow q & &
\end{array}
$$

## Solution:

$$
\begin{aligned}
& p \leftrightarrow q \quad \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& \equiv(\neg p \vee q) \wedge(q \rightarrow p) \\
& \equiv(\neg p \vee q) \wedge(\neg q \vee p) \\
& \equiv((\neg p \vee q) \wedge \neg q) \vee((\neg p \vee q) \wedge p) \\
& \equiv(\neg q \wedge(\neg p \vee q)) \vee((\neg p \vee q) \wedge p) \\
& \equiv((\neg q \wedge \neg p) \vee(\neg q \wedge q)) \vee((\neg p \vee q) \wedge p) \\
& \equiv((\neg p \wedge \neg q) \vee(\neg q \wedge q)) \vee((\neg p \vee q) \wedge p) \\
& \equiv((\neg p \wedge \neg q) \vee(q \wedge \neg q)) \vee((\neg p \vee q) \wedge p) \\
& \equiv((\neg p \wedge \neg q) \vee(q \wedge \neg q)) \vee(p \wedge(\neg p \vee q)) \\
& \equiv((\neg p \wedge \neg q) \vee(q \wedge \neg q)) \vee((p \wedge \neg p) \vee(p \wedge q)) \\
& \equiv((\neg p \wedge \neg q) \vee F) \vee((p \wedge \neg p) \vee(p \wedge q)) \\
& \equiv((\neg p \wedge \neg q) \vee F) \vee(F \vee(p \wedge q)) \\
& \equiv(\neg p \wedge \neg q) \vee(F \vee(p \wedge q)) \\
& \equiv(\neg p \wedge \neg q) \vee((p \wedge q) \vee F) \\
& \equiv(\neg p \wedge \neg q) \vee(p \wedge q) \\
& \equiv(p \wedge q) \vee(\neg p \wedge \neg q) \\
& \text { [iff is two implications] } \\
& \text { [Law of Implication] } \\
& \text { [Law of Implication] } \\
& \text { [Distributivity] } \\
& \text { [Commutativity] } \\
& \text { [Distributivity] } \\
& \text { [Commutativity] } \\
& \text { [Commutativity] } \\
& \text { [Commutativity] } \\
& \text { [Distributivity] } \\
& \text { [Negation] } \\
& \text { [Negation] } \\
& \text { [Identity] } \\
& \text { [Commutativity] } \\
& \text { [Identity] } \\
& \text { [Commutativity] }
\end{aligned}
$$

## 2. Non-equivalence

Prove that the following pairs of propositional formulae are not equivalent by finding inputs they differ on.
(a) $p \rightarrow q$

$$
q \rightarrow p
$$

## Solution:

A: They differ when $p=\mathrm{T}$ and $q=\mathrm{F}$.
B: They differ when $p=\mathrm{T}$ and $q=\mathrm{F}$ since $p \rightarrow q=\mathrm{T} \rightarrow \mathrm{F} \equiv \mathrm{F}$ but $q \rightarrow p \equiv \mathrm{~F} \rightarrow \mathrm{~T} \equiv \mathrm{~T}$.
(b) $p \rightarrow(q \wedge r) \quad(p \rightarrow q) \wedge r$

## Solution:

A: They differ when $p=r=\mathrm{F}$ since $p \rightarrow(q \wedge r)=\mathrm{F} \rightarrow(q \wedge \mathrm{~F}) \equiv \mathrm{T}$ but $(p \rightarrow q) \wedge r=(\mathrm{F} \rightarrow q) \wedge \mathrm{F} \equiv \mathrm{F}$.
B: They differ when $p=r=\mathrm{F}$ since $p \rightarrow(q \wedge r)=\mathrm{F} \rightarrow(q \wedge \mathrm{~F}) \equiv \mathrm{F} \rightarrow \mathrm{F} \equiv \mathrm{T}$ and on the other hand $(p \rightarrow q) \wedge r=(\mathrm{F} \rightarrow q) \wedge \mathrm{F} \equiv \mathrm{T} \wedge \mathrm{F} \equiv \mathrm{F}$.

## 3. Boolean Algebra

For each of the following parts, write the logical expression using boolean algebra operators. Then, simplify it using axioms and theorems of boolean algebra.
(a) $\neg p \vee(\neg q \vee(p \wedge q))$

## Solution:

A: First, we replace $\neg, \vee$, and $\wedge$. This gives us $p^{\prime}+q^{\prime}+p q$. (Note that the parentheses are not necessary in boolean algebra since the operations are associative.) Next, we can use DeMorgan's laws to get the slightly simpler $(p q)^{\prime}+p q$. Then, we can use commutativity to get $p q+(p q)^{\prime}$ and complementarity to get 1. (Note that this is another way of saying the formula is a tautology.)

B: Replacing $\neg, \vee$, and $\wedge$ gives us $p^{\prime}+q^{\prime}+p q$. (Note that parentheses are not necessary in boolean algebra since the operations are associative.) Then, we can simplify as follows:

$$
\begin{array}{rlr}
p^{\prime}+q^{\prime}+p q & =(p q)^{\prime}+p q & \text { De Morgan } \\
& =p q+(p q)^{\prime} & \text { Commutativity } \\
& =1 & \text { Complementarity }
\end{array}
$$

Since 1 in boolean algebra means T , this shows that the original expression is a tautology.
(b) $\neg(p \vee(q \wedge p))$

## Solution:

A:

$$
\begin{array}{rlr}
(p+q p)^{\prime} & =p^{\prime}(q p)^{\prime} & \text { De Morgan } \\
& =p^{\prime}\left(q^{\prime}+p^{\prime}\right) & \text { De Morgan (on second term) } \\
& =p^{\prime}\left(p^{\prime}+q^{\prime}\right) & \text { Commutativity } \\
& =p^{\prime} & \text { Absorption }
\end{array}
$$

B: Translating to Boolean algebra, we get $(p+q p)^{\prime}$. Then, we can simplify as follows:

$$
\begin{array}{rlr}
(p+q p)^{\prime} & =p^{\prime}(q p)^{\prime} & \text { De Morgan } \\
& =p^{\prime}\left(q^{\prime}+p^{\prime}\right) & \text { De Morgan } \\
& =p^{\prime}\left(p^{\prime}+q^{\prime}\right) & \text { Commutativity } \\
& =p^{\prime} & \text { Absorption }
\end{array}
$$

## 4. Properties of XOR

Like $\wedge$ and $\vee$, the $\oplus$ operator (exclusive or) has many interesting properties. For example, it is easy to verify with a truth table that $\oplus$ is also associative. In this problem, we will prove some additional properties of $\oplus$.

Use equivalence chains to prove each of the facts stated below. For this problem only, you may also use the equivalence

$$
p \oplus q \equiv(p \wedge \neg q) \vee(\neg p \wedge q)
$$

which you may cite as "Definition of $\oplus$ ". This equivalence allows you to translate $\oplus$ into an expression involving only $\wedge, \vee$, and $\neg$, so that the standard equivalences can then be applied.
(a) $p \oplus q \equiv q \oplus p$ (Commutativity)

## Solution:

$$
\begin{aligned}
p \oplus q & \equiv(p \wedge \neg q) \vee(\neg p \wedge q) & & \text { Definition of } \oplus \\
& \equiv(\neg p \wedge q) \vee(p \wedge \neg q) & & \text { Commutativity } \\
& \equiv(q \wedge \neg p) \vee(\neg q \wedge p) & & \text { Commutativity } \\
& \equiv q \oplus p & & \text { Definition of } \oplus
\end{aligned}
$$

(b) $p \oplus p \equiv \mathrm{~F}$ and $p \oplus \neg p \equiv \mathrm{~T}$

## Solution:

$$
\begin{aligned}
p \oplus p & \equiv(p \wedge \neg p) \vee(\neg p \wedge p) & & \text { Definition of } \oplus \\
& \equiv(p \wedge \neg p) \vee(p \wedge \neg p) & & \text { Commutativity } \\
& \equiv(p \wedge \neg p) & & \text { Idempotency } \\
& \equiv \mathrm{F} & & \text { Negation } \\
p \oplus \neg p & \equiv(p \wedge \neg \neg p) \vee(\neg p \wedge \neg p) & & \text { Definition of } \oplus \\
& \equiv(p \wedge p) \vee(\neg p \wedge \neg p) & & \text { Double Negatio } \\
& \equiv p \vee \neg p & & \text { Idempotency } \\
& \equiv \mathrm{T} & & \text { Negation }
\end{aligned}
$$

(c) $p \oplus \mathrm{~F} \equiv p$ and $p \oplus \mathrm{~T} \equiv \neg p$

## Solution:

$$
\begin{aligned}
p \oplus \mathrm{~F} & \equiv(p \wedge \neg \mathrm{~F}) \vee(\neg p \wedge \mathrm{~F}) & & \text { Definition of } \oplus \\
& \equiv(p \wedge(\neg \mathrm{~F} \vee \mathrm{~F})) \vee(\neg p \wedge \mathrm{~F}) & & \text { Identity } \\
& \equiv(p \wedge(\mathrm{~F} \vee \neg \mathrm{~F})) \vee(\neg p \wedge \mathrm{~F}) & & \text { Commutativity } \\
& \equiv(p \wedge \mathrm{~T}) \vee(\neg p \wedge \mathrm{~F}) & & \text { Negation } \\
& \equiv p \vee(\neg p \wedge \mathrm{~F}) & & \text { Identity } \\
& \equiv p \vee \mathrm{~F} & & \text { Domination } \\
& \equiv p & & \text { Identity } \\
p \oplus \mathbf{T} & \equiv(p \wedge \neg \mathbf{T}) \vee(\neg p \wedge \mathrm{~T}) & & \\
& \equiv(p \wedge \neg \mathbf{T}) \vee \neg p & & \text { Definition of } \oplus \\
& \equiv(\neg \neg p \wedge \neg \mathrm{~T}) \vee \neg p & & \text { Identity } \\
& \equiv \neg(\neg p \vee \mathrm{~T}) \vee \neg p & & \text { Double Negation } \\
& \equiv \neg \mathbf{T} \vee \neg p & & \text { De Morgan } \\
& \equiv \neg(\mathrm{T} \wedge p) & & \text { Domination } \\
& \equiv \neg(p \wedge \mathrm{~T}) & & \text { De Morgan } \\
& \equiv \neg p & & \text { Commutativity } \\
& & & \text { Identity }
\end{aligned}
$$

(d) $(\neg p) \oplus q \equiv \neg(p \oplus q) \equiv p \oplus(\neg q)$. I.e., negating one of the inputs negates the overall expression.

## Solution:

$$
\begin{aligned}
\neg(p \oplus q) & \equiv \neg((p \wedge \neg q) \vee(\neg p \wedge q)) & & \text { Definition of } \oplus \\
& \equiv \neg(p \wedge \neg q) \wedge \neg(\neg p \wedge q) & & \text { De Morgan } \\
& \equiv(\neg p \vee \neg \neg q) \wedge(\neg \neg p \vee \neg q) & & \text { De Morgan } \\
& \equiv(\neg p \vee q) \wedge(p \vee \neg q) & & \text { Double Negation } \\
& \equiv((\neg p \vee q) \wedge p) \vee((\neg p \vee q) \wedge \neg q) & & \text { Distributivity } \\
& \equiv(p \wedge(\neg p \vee q)) \vee(\neg q \wedge(\neg p \vee q)) & & \text { Commutativity } \\
& \equiv((p \wedge \neg p) \vee(p \wedge q)) \vee((\neg q \wedge \neg p) \vee(\neg q \wedge q)) & & \text { Distributivity } \\
& \equiv((p \wedge \neg p) \vee(p \wedge q)) \vee((\neg q \wedge \neg p) \vee(q \wedge \neg q)) & & \text { Commutativity } \\
& \equiv(F \vee(p \wedge q)) \vee((\neg q \wedge \neg p) \vee \mathrm{F}) & & \text { Negation } \\
& \equiv((p \wedge q) \vee \mathrm{F}) \vee((\neg q \wedge \neg p) \vee \mathrm{F}) & & \text { Commutativity } \\
& \equiv(p \wedge q) \vee(\neg q \wedge \neg p) & & \text { Negation } \\
& \equiv(\neg \neg p \wedge q) \vee(\neg q \wedge \neg p) & & \text { Double Negation } \\
& \equiv(\neg \neg p \wedge q) \vee(\neg p \wedge \neg q) & & \text { Commutativity } \\
& \equiv(\neg p \wedge \neg q) \vee(\neg \neg p \wedge q) & & \text { Commutativity } \\
& \equiv \neg p \oplus q & & \text { Definition of } \oplus
\end{aligned}
$$

The second equivalence $\neg(p \oplus q) \equiv p \oplus(\neg q)$ follows from the first and Commutativity (part a).

