CSE 311: Foundations of Computing |

Section 2: Equivalences and Boolean Algebra Solutions

1. Equivalences
Prove that each of the following pairs of propositional formulae are equivalent using propositional equivalences.

(@) p—>(g—r) q—(pVr)

Solution:

-p—(qg—r) = —-pV(g—r) [Law of Implication]
= pV(g—r) [Double Negation]
= pV(-qVr) [Law of Implication]
= (pV-q)Vr [Associativity]
= (~gVp)Vr [Commutativity]
= —qV(pVr) [Associativity]
= g—(pVr) [Law of Implication]

(b) p <> q (pAg)V (=P A—g)
Solution:

P q = p—9N(@—Dp) [iff is two implications]
= (pVgA(g—p) [Law of Implication]
= (pVg A(~qVp) [Law of Implication]
= (((kpV@)A=q)V((-pVaq)Ap) [Distributivity]
= (~gA(=pVaq)V((=pVae Ap) [Commutativity]
= ((mgA=-p)V(~qAq)V((—=pVaq)Ap) [Distributivity]
= (((pA=q)V(=gNq)V((-pVaq) Ap) [Commutativity]
= (((=pA=q)V(gA—q)V((=pVaq)Ap) [Commutativity]
= ((-pA=q)V(gA=g))V (A (=pVq)) [Commutativity]
= ((-pA=q)V(gA=9)V((pAN-D)V(PAQ) [Distributivity]
= (((pA=q)VE)V((pA—p)V(pAq)) [Negation]
= ((-pA—=q)VF)V(FV(pAq)) [Negation]
= (-pA-q)V(FV(pAq)) [Identity]
= (pA-q)V((pAgVF) [Commutativity]
= (pA-q)V(pAa) [Identity]
= (PAQV(pA—9g) [Commutativity]



2. Non-equivalence
Prove that the following pairs of propositional formulae are not equivalent by finding inputs they differ on.

(a) p—q q—p

Solution:
A: They differ when p =T and ¢ = F.
B: They differ when p =T and g =F sincep > ¢q=T —>F=Fbutq—-p=F—>T=T.

(b) p—(gAT) (p—=aq)Ar

Solution:
A: They differ when p =r = F since p — (¢Ar) =F = (¢AF) =T but (p - ¢)Ar=(F - ¢)AF=F.

B: They differ when p =7 = F sincep — (¢A7) =F - (¢ AF) =F — F =T and on the other hand
p—=gNAr=F—=>¢g NF=TAF=F.

3. Boolean Algebra

For each of the following parts, write the logical expression using boolean algebra operators. Then, simplify it
using axioms and theorems of boolean algebra.

(@) pV(=qV(pAq))

Solution:

A: First, we replace —,V, and A. This gives us p' + ¢’ + pg. (Note that the parentheses are not necessary
in boolean algebra since the operations are associative.) Next, we can use DeMorgan's laws to get the
slightly simpler (pq)’ +pq. Then, we can use commutativity to get pg + (pq)’ and complementarity to get
1. (Note that this is another way of saying the formula is a tautology.)

B: Replacing —, V, and A gives us p’ + ¢’ + pq. (Note that parentheses are not necessary in boolean
algebra since the operations are associative.) Then, we can simplify as follows:

P +d +pg=(pg9) +pq De Morgan
= pq + (pg)’ Commutativity
=1 Complementarity

Since 1 in boolean algebra means T, this shows that the original expression is a tautology.

=(pV(gADp))

Solution:
A:

(p+ap) =1 (ap) De Morgan
=p'(¢ +p) De Morgan (on second term)
=p'(p" +¢) Commutativity
=/ Absorption



B: Translating to Boolean algebra, we get (p + ¢gp)’. Then, we can simplify as follows:

(p+ap) =1'(qp) De Morgan
=9 (¢ +7) De Morgan
=p' (0" +4') Commutativity
=p Absorption

4. Properties of XOR
Like A and V, the @ operator (exclusive or) has many interesting properties. For example, it is easy to verify
with a truth table that @ is also associative. In this problem, we will prove some additional properties of &.

Use equivalence chains to prove each of the facts stated below. For this problem only, you may also use
the equivalence

p®g=(pA—q)V(-pAq)
which you may cite as “Definition of ®". This equivalence allows you to translate & into an expression involving
only A, V, and —, so that the standard equivalences can then be applied.
(a) p® q = q® p (Commutativity)

Solution:
pOg=PA-q)V(-pAQ) Definition of @
=(pAq)V(pA—q) Commutativity
= (g A\ =wp) V(g Ap) Commutativity
=q®dp Definition of @

(b)) pdp=Fandp®—-p=T

Solution:
p@p=(pA-p)V(-pAD) Definition of &

=(pA-p)V(pA-p) Commutativity
= (p A -p) Idempotency
=F Negation

p@-p=((pPA-—p)V(-pA-p) Definition of &
=((pAp)V(-pA-p) Double Negation
=pV-p Idempotency
=T Negation



(c) p@F=pandpd®

Solution:

pdF=
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Definition of @
Identity
Commutativity
Negation
Identity
Domination
Identity

Definition of ®
Identity

Double Negation
De Morgan
Domination

De Morgan
Commutativity
Identity

(d) (-p)®g=-(p®q) =p®(—q). l.e., negating one of the inputs negates the overall expression.

Definition of &
De Morgan

De Morgan
Double Negation
Distributivity
Commutativity
Distributivity
Commutativity
Negation
Commutativity
Negation
Double Negation
Commutativity
Commutativity
Definition of &

The second equivalence —(p @ q) = p @ (—q) follows from the first and Commutativity (part a).



