CSE 311: Foundations of Computing

Lecture 27: Undecidability

DEFINE DOES IT HALT (PROGRAM):

RETURN TRUE;

THE BIG PICTURE SOLUTION TO THE HALTING PROBLEM

Final exam

- Monday at either 2:30-4:20 (B) or 4:30-6:20 (A)
 CSE2 G20
 - Bring your **UW ID** and have it ready before the exam
- **Comprehensive** coverage. If you had a homework question on it, it is fair game. Small probs on other topics.
 - Includes pre-midterm topics, e.g. formal proofs.
 Will contain any useful reference sheets at end.
- Review session: Saturday 1-3 pm in SAV 260
 - Bring your questions !!

8 problems covering the following:

- Formal proofs
- Induction: ordinary, strong, structural
- Language design: RE, DFA, NFA, CFG, recursive sets
- FSM algorithms: RE to NFA, NFA to DFA, state minimization
- Proving irregularity
- Small problems on other topics such as
 - Modular arithmetic
 - Relations
 - Set theory
 - Undecidability

A set **S** is **countable** iff we can order the elements of **S** as $S = \{x_1, x_2, x_3, ...\}$

Countable sets:

- $\mathbb N$ the natural numbers
- $\ensuremath{\mathbb{Z}}$ the integers
- \mathbb{Q} the rationals
- Σ^* the strings over any finite Σ
- The set of all Java programs

Shown by "dovetailing" **Theorem** [Cantor]:

The set of real numbers between 0 and 1 is **not** countable.

Proof using "diagonalization".

Last time: Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

		1	2	3	4	Flipp	oing ru	le:				
r ₁	0.	5 1	0	0	0	If digit is 5 , make it 1 .						
r ₂	0.	3	3 ⁵	3	3	If digit is not 5 , make it 5 .						
r ₃	0.	1	4	2 ⁵	8	5	7	1	4	•••		
r ₄	0.	1	4	1	5 ¹	9	2	6	5	•••	•••	
	every n					2 ⁵	1	2	2	•••	•••	
		$0.\widehat{x}_{11}$ e numbe			55	0	0 ⁵	0	0	•••	•••	
the r	រ -th diဋ	git!				8	1	8	2	•••	•••	

So the list is incomplete, which is a contradiction.

Thus the real numbers between 0 and 1 are not countable: "uncountable"

- The set of rational numbers in [0,1) also have decimal representations like this
 - The only difference is that rational numbers always have repeating decimals in their expansions 0.33333... or .25000000...
- So why wouldn't the same proof show that this set of rational numbers is uncountable?
 - Given any listing we could create the flipped diagonal number *d* as before
 - However, *d* would not have a repeating decimal expansion and so wouldn't be a rational #
 It would not be a "missing" number, so no contradiction.

Last time: The set of all functions $f : \mathbb{N} \rightarrow \{0, ..., 9\}$ is uncountable

Supposed listing of all the functions:

	1	2	3	4	Flippiı	ng rule	9:			
f ₁	5 ¹	0	0	0	If $f_n(1)$	-		D(n)	= 1	
f ₂	3	3 ⁵	3	3	If $f_n(1)$	$n) \neq 5$, set	D(n)	= 5	J
f ₃	1	4	2 ⁵	8	5	7	1	4	•••	
f ₄	1	4	1	5 ¹	9	2	6	5	•••	•••
f ₅	1	2	1	2	2 ⁵	1	2	2	•••	•••
f ₆	2	5	0	0	0	0 ⁵	0	0	•••	•••
f ₇	7	1	8	2	8	1	8	2	•••	•••

For all n, we have $D(n) \neq f_n(n)$. Therefore $D \neq f_n$ for any n and the list is incomplete! $\Rightarrow \{f \mid f : \mathbb{N} \rightarrow \{0, 1, \dots, 9\}\}$ is **not** countable

Last time: Uncomputable functions

We have seen that:

- The set of all (Java) programs is countable
- The set of all functions $f : \mathbb{N} \to \{0, \dots, 9\}$ is not countable

So: There must be some function $f : \mathbb{N} \to \{0, ..., 9\}$ that is not computable by any program!

Interesting... maybe.

Can we come up with an explicit function that is uncomputable?

```
11
public static void collatz(n) {
   if (n == 1) {
                                             34
      return 1;
                                             17
   }
                                             52
   if (n % 2 == 0) {
                                             26
      return collatz(n/2)
                                             13
   }
                                             40
   else {
                                             20
      return collatz(3*n + 1)
   }
                                             10
}
                                             5
                                             16
What does this program do?
                                             8
   ... on n=11?
                                             4
   2
                                             1
```

A "Simple" Program

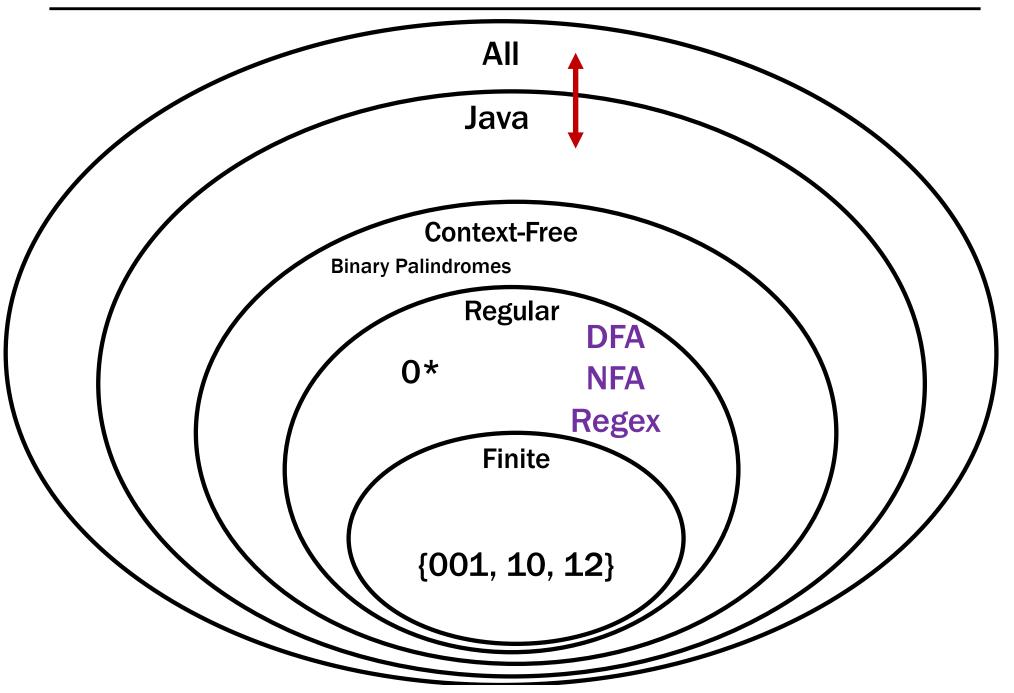
```
public static void collatz(n) {
    if (n == 1) {
        return 1;
    }
    if (n % 2 == 0) {
        return collatz(n/2)
    }
    else {
        return collatz(3*n + 1)
    }
}
```

Nobody knows whether or not this program halts on all inputs!

What does this program do?

- ... on n=11?

Recall our language picture



We're going to be talking about Java code.

CODE(P) will mean "the code of the program **P**"

So, consider the following function:
 public String P(String x) {
 return new String(Arrays.sort(x.toCharArray());
 }

What is **P(CODE(P))**?

"((((())))..;AACPSSaaabceeggghiiiiInnnnnooprrrrrrrrssstttttuuwxxyy{}"

CODE(P) means "the code of the program **P**"

The Halting Problem

Given: - CODE(P) for any program P - input x

Output: true if P halts on input x false if P does not halt on input x

Undecidability of the Halting Problem

CODE(P) means "the code of the program **P**"

The Halting Problem

Given: - CODE(**P**) for any program **P** - input **x**

Output: true if P halts on input x false if P does not halt on input x

Theorem [Turing]: There is no program that solves the Halting Problem

Suppose that H is a Java program that solves the Halting problem.

Suppose that H is a Java program that solves the Halting problem.

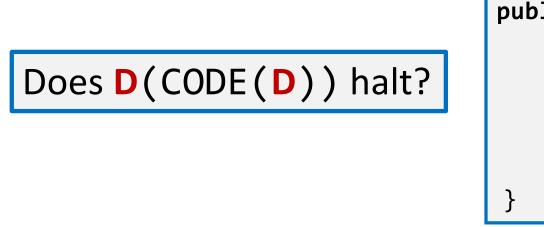
Then we can write this program:

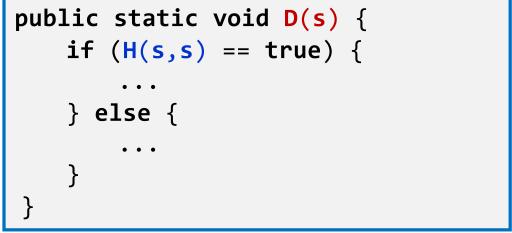
```
public static void D(String s) {
    if (H(s,s) == true) {
        ...
    } else {
        ...
    }
  }
public static bool H(String s, String x) { ... }
```

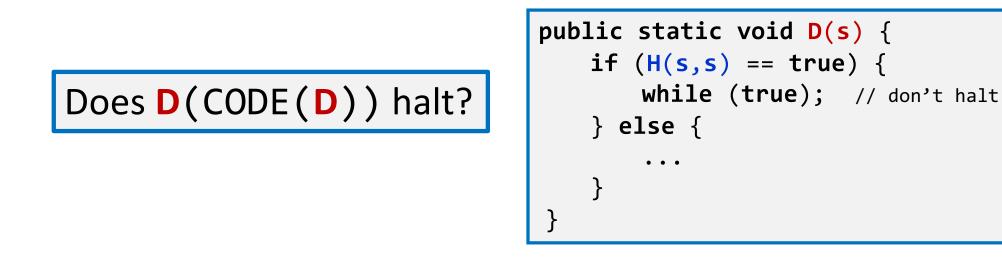
Does D(CODE(**D**)) halt?

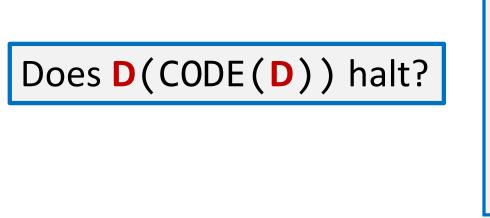
Does D(CODE(D)) halt?

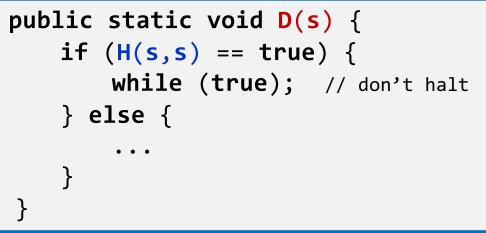
```
public static void D(s) {
    if (H(s,s) == true) {
        ...
    } else {
        ...
    }
}
```





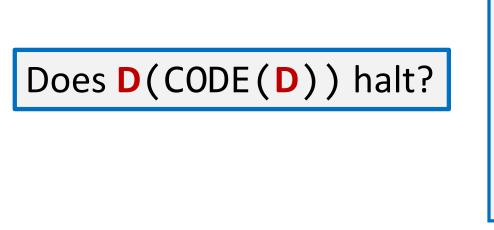


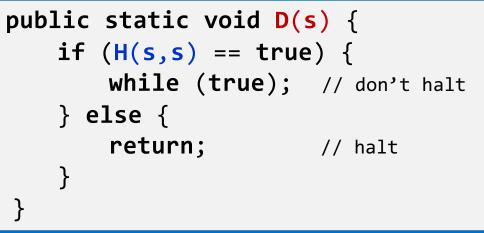




Suppose that **D**(CODE(**D**)) halts.

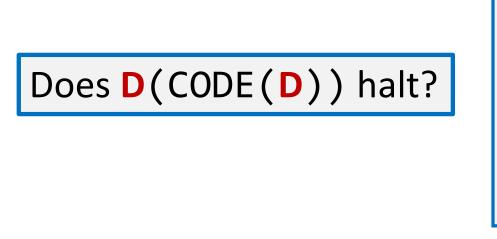
Then, by definition of **H** it must be that **H**(CODE(**D**), CODE(**D**)) is **true** Which by the definition of **D** means **D**(CODE(**D**)) **doesn't halt**

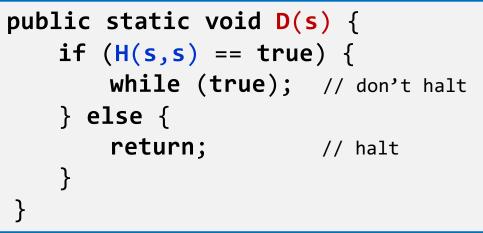




Suppose that **D**(CODE(**D**)) halts.

Then, by definition of **H** it must be that **H**(CODE(**D**), CODE(**D**)) is **true** Which by the definition of **D** means **D**(CODE(**D**)) **doesn't halt**

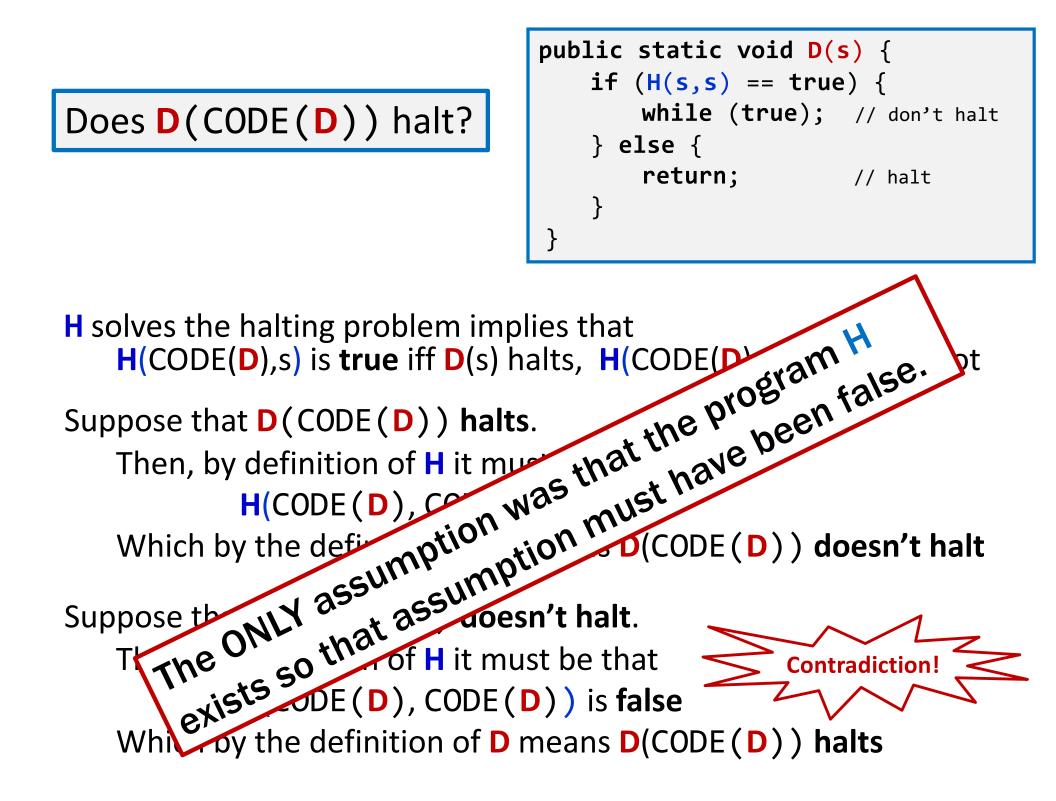




Suppose that **D**(CODE(**D**)) halts.

Then, by definition of **H** it must be that **H**(CODE(**D**), CODE(**D**)) is **true** Which by the definition of **D** means **D**(CODE(**D**)) **doesn't halt**

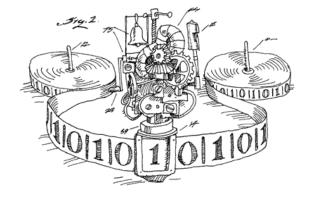
Suppose that D(CODE(D)) doesn't halt.
Then, by definition of H it must be that
H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts



Done

- We proved that there is no computer program that can solve the Halting Problem.
 - There was nothing special about Java*

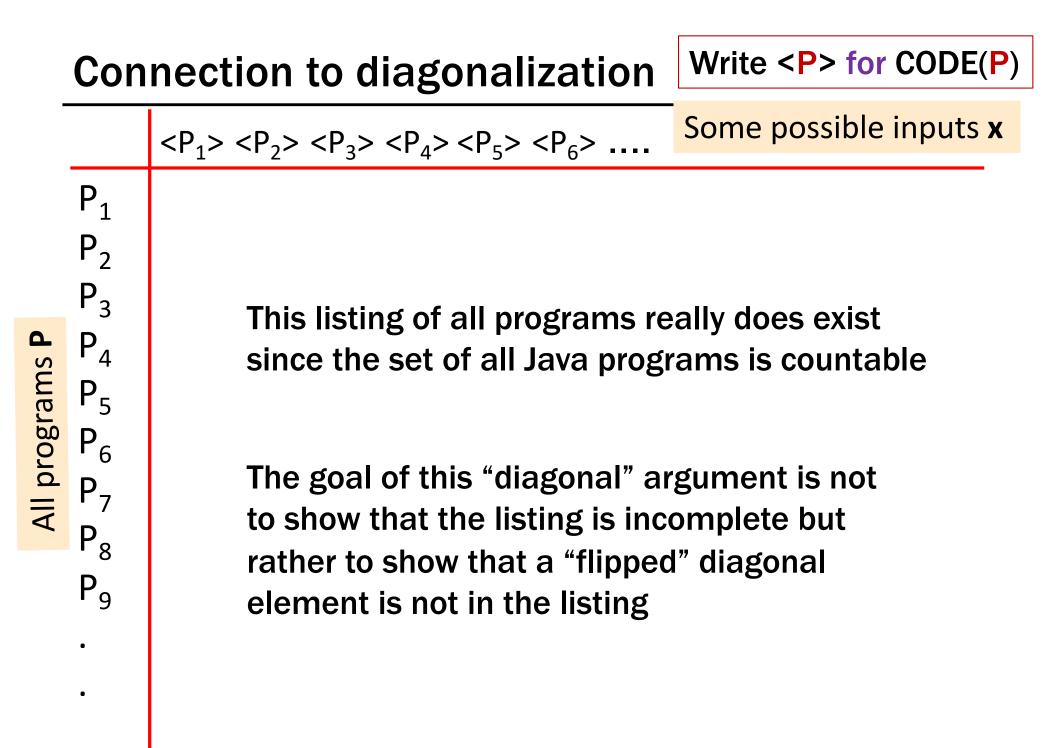
[Church-Turing thesis]



 This tells us that there is no compiler that can check our programs and guarantee to find any infinite loops they might have.

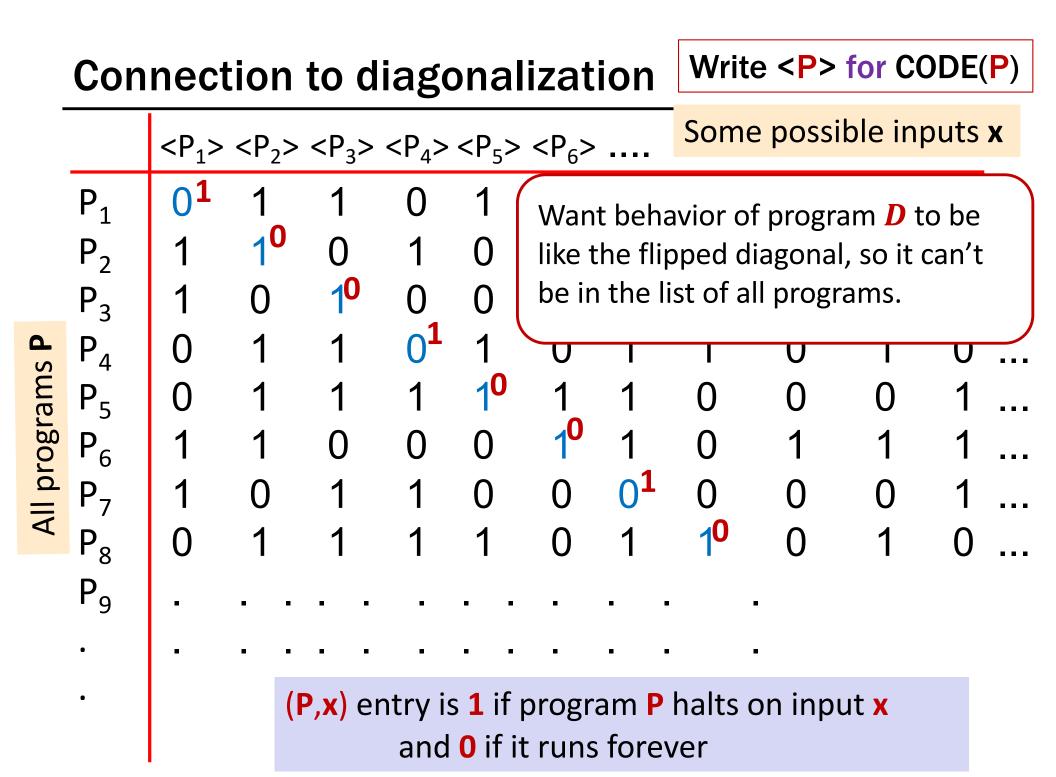
```
public static void D(s) {
    if (H(s,s) == true) {
        while (true); // don't halt
    } else {
        return; // halt
    }
}
```

D halts on input code(P) iff H(code(P),code(P)) outputs false iff P doesn't halt on input code(P)



	Con	nection to diagonalization							Write <p> for CODE(P)</p>				
-		<p<sub>1></p<sub>	<p<sub>2></p<sub>	<p<sub>3></p<sub>	<p<sub>4></p<sub>	<p<sub>5></p<sub>	<p<sub>6></p<sub>	>	Som	e possi	ble inp	outs x	
	P ₁	0	1	1	0	1	1	1	0	0	0	1	
	P_2	1	1	0	1	0	1	1	0	1	1	1	
	P_3	1	0	1	0	0	0	0	0	0	0	1	
Р	P_4	0	1	1	0	1	0	1	1	0	1	0	
am	P_5	0	1	1	1	1	1	1	0	0	0	1	
180	P_6	1	1	0	0	0	1	1	0	1	1	1	
All programs	P ₇	1	0	1	1	0	0	0	0	0	0	1	
A	P ₈	0	1	1	1	1	0	1	1	0	1	0	
	P ₉	-			-		•		ı	•			
	•	•		• •	•	• •	•	• •	I	•			
	•		(1	P,x) er	ntry i	s 1 if p	orogi	ram P	halts	on inpu	ut x		

and **0** if it runs forever



```
public static void D(s) {
    if (H(s,s) == true) {
        while (true); /* don't halt */
     }
    else {
        return; /* halt */
     }
}
```

D halts on input code(P) iff H(code(P),code(P)) outputs false iff P doesn't halt on input code(P)

Therefore for any program P, **D** differs from P on input code(P)

The Halting Problem isn't the only hard problem

 Can use the fact that the Halting Problem is undecidable to show that other problems are undecidable

General method:

Prove that if there were a program deciding B then there would be a way to build a program deciding the Halting Problem.

"B decidable → Halting Problem decidable" Contrapositive:

"Halting Problem undecidable \rightarrow B undecidable" Therefore B is undecidable

Students should write a Java program that:

- Prints "Hello" to the console
- Eventually exits

Gradelt, Practicelt, etc. need to grade the students.

How do we write that grading program?

WE CAN'T: THIS IS IMPOSSIBLE!

- HelloWorldTesting Problem:
 - Input: CODE(Q) and x
 - Output:

True if Q outputs "HELLO WORLD" on input xFalse if Q does not output "HELLO WORLD" on input x

- **Theorem:** The HelloWorldTesting Problem is undecidable.
- Proof idea: Show that if there is a program T to decide HelloWorldTesting then there is a program H to decide the Halting Problem for code(P) and x.

- Suppose there is a program T that solves the HelloWorldTesting problem. Define program H that takes input CODE(P) and x and does the following:
 - Creates CODE(Q) from CODE(P) by
 - (1) removing all output statements from CODE(P), and
 - (2) adding a System.out.println("HELLO WORLD") immediately before any spot where P could halt

Then runs **T** on input CODE(Q) and x.

```
public class Q {
  public static void main(String[] args) {
    PrintStream out = System.out;
    System.setOut(new PrintStream(
        new WriterOutputStream(new StringWriter());
    P(args);
    out.println("HELLO WORLD");
  }
}
public class P {
  public static void main(String[] args) { ... }
}
```

- Suppose there is a program T that solves the HelloWorldTesting problem. Define program H that takes input CODE(P) and x and does the following:
 - Creates CODE(Q) from CODE(P) by
 - (1) removing all output statements from CODE(P), and
 - (2) adding a System.out.println("HELLO WORLD") immediately before any spot where P could halt

Then runs T on input CODE(Q) and x.

- If P halts on input x then Q prints HELLO WORLD and halts and so H outputs true (because T outputs true on input CODE(Q))
- If P doesn't halt on input x then Q won't print anything since we removed any other print statement from CODE(Q) so H outputs false

We know that such an H cannot exist. Therefore T cannot exist.

- Input: CODE(R) for program R
- Output: True if R halts without reading input
 False otherwise.

Theorem: HaltsNoInput is undecidable

General idea "hard-coding the input":

Show how to use CODE(P) and x to build CODE(R) so
 P halts on input x ⇔ R halts without reading input

```
public class R {
  private static String x = "...";
  public static void main(String[] args) {
    System.setIn(new ReaderInputStream(
        new StringReader(x)));
    P(args);
  }
}
public class P {
  public static void main(String[] args) { ... }
}
```

"Hard-coding the input":

- Show how to use CODE(P) and x to build CODE(R) so
 P halts on input x ⇔ R halts without reading input
- So if we have a program N to decide HaltsNoInput then we can use it as a subroutine as follows to decide the Halting Problem, which we know is impossible:
 - On input CODE(P) and x, produce CODE(R). Then run N on input CODE(Q) and output the answer that N gives.

• The impossibility of writing the CSE 141 grading program follows by combining the ideas from the undecidability of HaltsNoInput and HelloWorld.

More Reductions

- Can use undecidability of these problems to show that other problems are undecidable.
- For instance:

EQUIV(P,Q):

True if P(x) and Q(x) have the same behavior for every input xFalse otherwise

Not every problem on programs is undecidable!

Which of these is decidable?

•	Input CODE(P) and x									
	Output: true if P prints "ERROR" on input x									
	after less than 100 steps									
	false otherwise									
•	Input CODE(P) and x									
	Output: true if P prints "ERROR" on input x									

after more than 100 steps

false otherwise

Rice's Theorem (a.k.a. Compilers ARE DIFFICULT Any "non-trivial" property of the **input-output behavior** of Java programs is undecidable. We know can answer almost any question about REs.

But many problems about CFGs are undecidable!

- Is there any string that two CFGs both accept?
- Do two CFGs accept the same language?
- Does a CFG accept every string?

Not just what can be computed at all...

How about what can be computed *efficiently*?

A rich, interesting, and important topic. See CSE 431 for much more on that!

Final exam

- Monday at either 2:30-4:20 (B) or 4:30-6:20 (A)
 CSE2 G20
 - Bring your **UW ID** and have it ready before the exam
- **Comprehensive** coverage. If you had a homework question on it, it is fair game. (Maybe small probs on other topics.)
 - Includes pre-midterm topics, e.g. formal proofs.
 Will contain any useful reference sheets at end.
- Review session: *Saturday* 1-3 pm in SAV 260
 - Bring your questions !!