
CSE 311: Foundations of Computing

Lecture 27: Undecidability

Final exam

• Monday at either 2:30-4:20 (B) or 4:30-6:20 (A)
– CSE2 G20
– Bring your UW ID and have it ready before the exam

• Comprehensive coverage. If you had a homework question
on it, it is fair game. Small probs on other topics.
– Includes pre-midterm topics, e.g. formal proofs.

Will contain any useful reference sheets at end.

• Review session: Saturday 1-3 pm in SAV 260
– Bring your questions !!

Final exam problems

8 problems covering the following:
• Formal proofs
• Induction: ordinary, strong, structural

• Language design: RE, DFA, NFA, CFG, recursive sets

• FSM algorithms: RE to NFA, NFA to DFA, state minimization

• Proving irregularity
• Small problems on other topics such as

– Modular arithmetic
– Relations
– Set theory
– Undecidability

Last time: Countable sets

A set 𝑺 is countable iff we can order the elements of 𝑺 as
𝑺 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑,… }

Countable sets:
ℕ - the natural numbers
ℤ - the integers
ℚ - the rationals
Σ∗- the strings over any finite Σ
The set of all Java programs

} Shown
by
“dovetailing”

Last time: Not every set is countable

Theorem [Cantor]:
The set of real numbers between 0 and 1 is not countable.

Proof using “diagonalization”.

Last time: Proof that [0,1) is not countable
Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...
r1 0. 5 0 0 0 0 0 0 0

r2 0. 3 3 3 3 3 3 3 3

r3 0. 1 4 2 8 5 7 1 4

r4 0. 1 4 1 5 9 2 6 5

r5 0. 1 2 1 2 2 1 2 2

r6 0. 2 5 0 0 0 0 0 0

r7 0. 7 1 8 2 8 1 8 2

r8 0. 6 1 8 0 3 3 9 4

...

Flipping rule:
If digit is 5, make it 1.
If digit is not 5, make it 5.

1

5

5

5

5

5

1

5

So the list is incomplete, which is a contradiction.
Thus the real numbers between 0 and 1 are not countable: “uncountable”

For every 𝒏 ≥ 𝟏:
𝒓𝒏 ≠ 𝒅 = 𝟎. ;𝒙𝟏𝟏;𝒙𝟐𝟐;𝒙𝟑𝟑;𝒙𝟒𝟒;𝒙𝟓𝟓⋯
because the numbers differ on
the 𝒏-th digit!

A note on this proof

• The set of rational numbers in [0,1) also have
decimal representations like this
– The only difference is that rational numbers always

have repeating decimals in their expansions 0.33333...
or .25000000...

• So why wouldn’t the same proof show that this set
of rational numbers is uncountable?
– Given any listing we could create the flipped diagonal

number 𝒅 as before
– However, 𝒅 would not have a repeating decimal

expansion and so wouldn’t be a rational #
It would not be a “missing” number, so no contradiction.

Last time:
The set of all functions 𝑓 ∶ ℕ → {0, … , 9} is uncountable

1 2 3 4 5 6 7 8 9 ...
f1 0. 5 0 0 0 0 0 0 0

f2 0. 3 3 3 3 3 3 3 3

f3 0. 1 4 2 8 5 7 1 4

f4 0. 1 4 1 5 9 2 6 5

f5 0. 1 2 1 2 2 1 2 2

f6 0. 2 5 0 0 0 0 0 0

f7 0. 7 1 8 2 8 1 8 2

f8 0. 6 1 8 0 3 3 9 4

...

1

5

5

5

5

5

1

5

For all 𝒏, we have 𝑫 𝒏 ≠ 𝒇𝒏(𝒏). Therefore 𝑫 ≠ 𝒇𝒏 for any 𝒏 and the
list is incomplete! ⇒ 𝒇 𝒇:ℕ → {0,1,… , 9}} is not countable

Supposed listing of all the functions:

Flipping rule:
If 𝒇𝒏 𝒏 = 𝟓, set 𝑫 𝒏 = 𝟏
If 𝒇𝒏 𝒏 ≠ 𝟓, set 𝑫 𝒏 = 𝟓

Last time: Uncomputable functions

We have seen that:
– The set of all (Java) programs is countable
– The set of all functions 𝑓 ∶ ℕ → {0,… , 9} is not countable

So: There must be some function 𝑓 ∶ ℕ → {0,… , 9} that is not
computable by any program!

Interesting… maybe.
Can we come up with an explicit function that is
uncomputable?

A “Simple” Program

public static void collatz(n) {
if (n == 1) {

return 1;
}
if (n % 2 == 0) {

return collatz(n/2)
}
else {

return collatz(3*n + 1)
}

}

What does this program do?
… on n=11?
… on n=10000000000000000001?

11
34
17
52
26
13
40
20
10
5
16
8
4
2
1

A “Simple” Program

public static void collatz(n) {
if (n == 1) {

return 1;
}
if (n % 2 == 0) {

return collatz(n/2)
}
else {

return collatz(3*n + 1)
}

}

What does this program do?
… on n=11?
… on n=10000000000000000001?

Nobody knows whether or not
this program halts on all inputs!

Recall our language picture

All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

Binary Palindromes

{001, 10, 12}

Java

Some Notation

We’re going to be talking about Java code.

CODE(P) will mean “the code of the program P”

So, consider the following function:
public String P(String x) {

return new String(Arrays.sort(x.toCharArray());
}

What is P(CODE(P))?

“(((())))..;AACPSSaaabceeggghiiiilnnnnnooprrrrrrrrrrrsssttttttuuwxxyy{}”

Undecidability of The Halting Problem

CODE(P) means “the code of the program P”

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x

Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

Theorem [Turing]: There is no program that solves
the Halting Problem

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x

Proof by contradiction

Suppose that H is a Java program that solves the
Halting problem.

x

Proof by contradiction

Suppose that H is a Java program that solves the
Halting problem.

Then we can write this program:
public static void D(String s) {

if (H(s,s) == true) {
...

} else {
...

}
}

public static bool H(String s, String x) { ... }

Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s) == true) {

...
} else {

...
}

}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s) == true) {

...
} else {

...
}

}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(s) {
if (H(s,s) == true) {

while (true); // don’t halt
} else {

...
}

}

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s) == true) {

while (true); // don’t halt
} else {

...
}

}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(s) {
if (H(s,s) == true) {

while (true); // don’t halt

} else {
return; // halt

}
}

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s) == true) {

while (true); // don’t halt

} else {
return; // halt

}
}

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

Contradiction!The ONLY assumption was that th
e program H

exists so that assumption must have been false.

public static void D(s) {
if (H(s,s) == true) {

while (true); // don’t halt

} else {
return; // halt

}
}

Done

• We proved that there is no computer
program that can solve the Halting Problem.
– There was nothing special about Java*

[Church-Turing thesis]

• This tells us that there is no compiler that can check our
programs and guarantee to find any infinite loops they
might have.

Where did the idea for creating D come from?

D halts on input code(P) iff H(code(P),code(P)) outputs false
iff P doesn’t halt on input code(P)

public static void D(s) {
if (H(s,s) == true) {

while (true); // don’t halt

} else {
return; // halt

}
}

Connection to diagonalization
<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

Al
l p

ro
gr

am
s P

Write <P> for CODE(P)

This listing of all programs really does exist
since the set of all Java programs is countable

The goal of this “diagonal” argument is not
to show that the listing is incomplete but
rather to show that a “flipped” diagonal
element is not in the listing

Connection to diagonalization
<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

Al
l p

ro
gr

am
s P

0 1 1 0 1 1 1 0 0 0 1 ...
1 1 0 1 0 1 1 0 1 1 1 ...
1 0 1 0 0 0 0 0 0 0 1 ...
0 1 1 0 1 0 1 1 0 1 0 ...
0 1 1 1 1 1 1 0 0 0 1 ...
1 1 0 0 0 1 1 0 1 1 1 ...
1 0 1 1 0 0 0 0 0 0 1 ...
0 1 1 1 1 0 1 1 0 1 0 ...
.
.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

Write <P> for CODE(P)

Connection to diagonalization
<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

Al
l p

ro
gr

am
s P

0 1 1 0 1 1 1 0 0 0 1 ...
1 1 0 1 0 1 1 0 1 1 1 ...
1 0 1 0 0 0 0 0 0 0 1 ...
0 1 1 0 1 0 1 1 0 1 0 ...
0 1 1 1 1 1 1 0 0 0 1 ...
1 1 0 0 0 1 1 0 1 1 1 ...
1 0 1 1 0 0 0 0 0 0 1 ...
0 1 1 1 1 0 1 1 0 1 0 ...
.
.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

1
0

0
1

0
0

1
0

Write <P> for CODE(P)

Want behavior of program 𝑫 to be
like the flipped diagonal, so it can’t
be in the list of all programs.

Al
l p

ro
gr

am
s P

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

Where did the idea for creating D come from?

public static void D(s) {
if (H(s,s) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */

}
}

D halts on input code(P) iff H(code(P),code(P)) outputs false
iff P doesn’t halt on input code(P)

Therefore for any program P, D differs from P on input code(P)

The Halting Problem isn’t the only hard problem

• Can use the fact that the Halting Problem is
undecidable to show that other problems are
undecidable

General method:
Prove that if there were a program deciding B then there
would be a way to build a program deciding the Halting
Problem.

“B decidable →	 Halting Problem decidable”
Contrapositive:

“Halting Problem undecidable → B undecidable”
Therefore B is undecidable

A CSE 141 assignment

Students should write a Java program that:
– Prints “Hello” to the console
– Eventually exits

GradeIt, PracticeIt, etc. need to grade the
students.

How do we write that grading program?

WE CAN’T: THIS IS IMPOSSIBLE!

A related undecidable problem

• HelloWorldTesting Problem:
– Input: CODE(Q) and x
– Output:

True if Q outputs “HELLO WORLD” on input x
False if Q does not output “HELLO WORLD” on input x

• Theorem: The HelloWorldTesting Problem is undecidable.
• Proof idea: Show that if there is a program T to decide

HelloWorldTesting then there is a program H to decide the
Halting Problem for code(P) and x.

A related undecidable problem

• Suppose there is a program T that solves the
HelloWorldTesting problem. Define program H that takes
input CODE(P) and x and does the following:
– Creates CODE(Q) from CODE(P) by

(1) removing all output statements from CODE(P), and
(2) adding a System.out.println(“HELLO WORLD”) immediately

before any spot where P could halt
Then runs T on input CODE(Q) and x.

A related undecidable problem
public class Q {
public static void main(String[] args) {
PrintStream out = System.out;
System.setOut(new PrintStream(

new WriterOutputStream(new StringWriter()));

P(args);

out.println(“HELLO WORLD”);
}

}

public class P {
public static void main(String[] args) { ... }
...

}

A related undecidable problem

• Suppose there is a program T that solves the
HelloWorldTesting problem. Define program H that takes
input CODE(P) and x and does the following:
– Creates CODE(Q) from CODE(P) by

(1) removing all output statements from CODE(P), and
(2) adding a System.out.println(“HELLO WORLD”) immediately

before any spot where P could halt
Then runs T on input CODE(Q) and x.

• If P halts on input x then Q prints HELLO WORLD and halts and so H
outputs true (because T outputs true on input CODE(Q))

• If P doesn’t halt on input x then Q won’t print anything since we removed
any other print statement from CODE(Q) so H outputs false

We know that such an H cannot exist. Therefore T cannot exist.

The HaltsNoInput Problem

• Input: CODE(R) for program R
• Output: True if R halts without reading input

False otherwise.

Theorem: HaltsNoInput is undecidable

General idea “hard-coding the input”:
• Show how to use CODE(P) and x to build CODE(R) so

P halts on input x ⇔	 R halts without reading input

The HaltsNoInput
public class R {
private static String x = “...”;

public static void main(String[] args) {
System.setIn(new ReaderInputStream(

new StringReader(x)));

P(args);
}

}

public class P {
public static void main(String[] args) { ... }
...

}

The HaltsNoInput Problem

“Hard-coding the input”:
• Show how to use CODE(P) and x to build CODE(R) so

P halts on input x ⇔	 R halts without reading input

• So if we have a program N to decide HaltsNoInput then we
can use it as a subroutine as follows to decide the Halting
Problem, which we know is impossible:
– On input CODE(P) and x, produce CODE(R). Then run N on input

CODE(Q) and output the answer that N gives.

CSE 141 grading is impossible

• The impossibility of writing the CSE 141 grading
program follows by combining the ideas from the
undecidability of HaltsNoInput and HelloWorld.

More Reductions

- Can use undecidability of these problems to show that
other problems are undecidable.

- For instance:
EQUIV(𝑃, 𝑄) : True if 𝑃 𝑥 and 𝑄(𝑥) have the same

behavior for every input 𝑥
False otherwise

Rice’s theorem
Not every problem on programs is undecidable!
Which of these is decidable?
• Input CODE(P) and x

Output: true if P prints “ERROR” on input x
after less than 100 steps

false otherwise
• Input CODE(P) and x

Output: true if P prints “ERROR” on input x
after more than 100 steps

false otherwise

Rice’s Theorem (a.k.a. Compilers Suck Theorem - informal):
Any “non-trivial” property of the input-output behavior of
Java programs is undecidable.

ARE DIFFICULT

CFGs are complicated

We know can answer almost any question about REs.

But many problems about CFGs are undecidable!
• Is there any string that two CFGs both accept?
• Do two CFGs accept the same language?
• Does a CFG accept every string?

More Complexity Theory

Not just what can be computed at all...

How about what can be computed efficiently?

A rich, interesting, and important topic.
See CSE 431 for much more on that!

Final exam

• Monday at either 2:30-4:20 (B) or 4:30-6:20 (A)
– CSE2 G20
– Bring your UW ID and have it ready before the exam

• Comprehensive coverage. If you had a homework question
on it, it is fair game. (Maybe small probs on other topics.)

– Includes pre-midterm topics, e.g. formal proofs.
Will contain any useful reference sheets at end.

• Review session: Saturday 1-3 pm in SAV 260
– Bring your questions !!

