
CSE 311: Foundations of Computing

Lecture 24b: NFAs → Regular expressions

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

⊆

Regular expressions ⊆ NFAs ≡ DFAs

We have shown how to build an optimal DFA for every
regular expression
– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA

Thus, we could now implement a RegExp library
– most RegExp libraries actually simulate the NFA
– (even better: one can combine the two approaches:

apply DFA minimization lazily while simulating the NFA)

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

⊆

Is this ⊆ really “=” or “⊊”?

Regular expressions ≡ NFAs ≡ DFAs

Theorem: For any NFA, there is a regular expression
that accepts the same language

Corollary: A language is recognized by a DFA (or NFA)
if and only if it has a regular expression

You need to know these facts
– the construction for the Theorem is sketched below

but you will not be tested on it

New Machinery: Generalized NFAs

• Like NFAs but allow
– parallel edges (between the same pair of states)
– regular expressions as edge labels

NFAs already have edges labeled ɛ or a

• Machine can follow an edge labeled by A by reading
a string of input characters in the language of A
– (if A is a or ɛ, this matches the original definition, but

we now allow REs built with recursive steps.)

New Machinery: Generalized NFAs

• Like NFAs but allow
– parallel edges
– regular expressions as edge labels

NFAs already have edges labeled ɛ or a

• The label of a path is now the concatenation of the
regular expressions on those edges, making it a
regular expression

• Def: A string x is accepted by a generalized NFA iff
there is a path from start to final state labeled by
a regular expression whose language contains x

Construction Idea

Add new start state and final state

ɛ

ɛ

ɛ

A

Then delete the original states one by one,
adding edges to keep the same language,
until the graph looks like:

Starting from an NFA

A

Then delete the original states one by one,
adding edges to keep the same language,
until the graph looks like:

Final graph has only one path to the accepting state,
which is labeled by A,
so it accepts iff x is in the language of A

Thus, A is a regular expression with the same
language as the original NFA.

Only two simplification rules

• Rule 1: For any two states q1 and q2 with parallel
edges (possibly q1=q2), replace

If the machine would have used the edge labeled A
by consuming an input x in the language of A, it can
instead use the edge labeled A⋃B.

Furthermore, this new edge does not allow transitions
for any strings other than those that matched A or B.

q1 q2

A

B
by A⋃B

q1 q2

Only two simplification rules

• Rule 2: Eliminate non-start/accepting state q3 by
creating direct edges that skip q3

for every pair of states q1, q2 (even if q1=q2)

Any path from q1 to q2 would have to match ABnC for
some n (the number of times the self loop was used),
so the machine can use the new edge instead. New
edge only allows strings that were allowed before.

A
B

C AB*Cq1 q3 q2 q1 q2
becomes

While the box contains some state s:
for all states r, t with (r, s) and (s, t) in E:

create a direct edge (r, t) by Rule 2
delete s (no longer needed)
merge all parallel edges by Rule 1

Construction Overview

Add new start state and final state

ɛ

ɛ

ɛ

Construction Overview

A

While the box contains some state s:
for all states r, t with (r, s) and (s, t) in E:

create a direct edge (r, t) by Rule 2
delete s (no longer needed)
merge all parallel edges by Rule 1

When the loop exits, the graph looks like this:

A is a regular expression with the same language
as the original NFA.

Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum
– Accept strings from {0,1,2}* where the digits

mod 3 sum of the digits is 0

t0 t2

t1

0

0
0

1 1

1

2

22

Splicing out a state t1

Create direct edges between neighbors of t1
(so that we can delete it afterward)

t0 t2

t1

0

0

1 1

1

2

22

0

s
ɛ

f

ɛ

Splicing out a state t1

Regular expressions to add to edges

t0 t2

t1

0

0

1 1

1

2

22

t0→t1→t0 : 10*2
t0→t1→t2 : 10*1
t2→t1→t0 : 20*2
t2→t1→t2 : 20*1

0

s
ɛ

f

ɛ

Splicing out a state t1

Delete t1 now that it is redundant

t0 t2

0 ∪ 20*1
2 ∪ 10*1

t0→t1→t0 : 10*2
t0→t1→t2 : 10*1
t2→t1→t0 : 20*2
t2→t1→t2 : 20*1

0 ∪ 10*2

s
ɛ

f

ɛ
1 ∪ 20*2

Splicing out a state t1

Create direct edges between neighbors of t2
(so that we can delete it afterward)

t0 t2

0 ∪ 20*1
2 ∪ 10*1

0 ∪ 10*2

s
ɛ

f

ɛ
1 ∪ 20*2

Splicing out a state t1

Regular expressions to add to edges

t0 t2

0 ∪ 20*1
2 ∪ 10*1

0 ∪ 10*2

s
ɛ

f

ɛ
1 ∪ 20*2

R1: 0 ∪ 10*2
R2: 2 ∪ 10*1
R3: 1 ∪ 20*2
R4: 0 ∪ 20*1

Splicing out state t2 (and then t0)

R1: 0 ∪ 10*2
R2: 2 ∪ 10*1
R3: 1 ∪ 20*2
R4: 0 ∪ 20*1

Delete t2 now that it is redundant

t0R5

f

ɛ

s
ɛ

R5: R1 ∪ R2R4*R3

Splicing out state t2 (and then t0)

R1: 0 ∪ 10*2
R2: 2 ∪ 10*1
R3: 1 ∪ 20*2
R4: 0 ∪ 20*1
R5: R1 ∪ R2R4*R3

Create direct (s,f) edge so we can delete t0

t0R5

f

ɛ

s
ɛ

Splicing out state t2 (and then t0)

R1: 0 ∪ 10*2
R2: 2 ∪ 10*1
R3: 1 ∪ 20*2
R4: 0 ∪ 20*1
R5: R1 ∪ R2R4*R3

Regular expressions to add to edges

t0R5

f

ɛ

s
ɛ

t0→t1→t0: R5 *

Splicing out state t2 (and then t0)

R1: 0 ∪ 10*2
R2: 2 ∪ 10*1
R3: 1 ∪ 20*2
R4: 0 ∪ 20*1
R5: R1 ∪ R2R4*R3

Delete t0 now that it is redundant

R6
fs

R6: R5*

Splicing out state t2 (and then t0)

R1: 0 ∪ 10*2
R2: 2 ∪ 10*1
R3: 1 ∪ 20*2
R4: 0 ∪ 20*1
R5: R1 ∪ R2R4*R3
R6: R5*

Regular expressions to add to edges

R6
fs

Final regular expression: R6 =
(0 ∪ 10*2 ∪ (2 ∪	10*1)(0 ∪ 20*1)*(1 ∪	20*2))*

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

=

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

=
Next time: Is this ⊆ really “=” or “⊊”?

