
CSE 311: Foundations of Computing

Lecture 24b:  NFAs → Regular expressions
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Regular expressions ⊆ NFAs ≡ DFAs

We have shown how to build an optimal DFA for every 
regular expression
– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA

Thus, we could now implement a RegExp library
– most RegExp libraries actually simulate the NFA
– (even better: one can combine the two approaches:

apply DFA minimization lazily while simulating the NFA)
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Is this ⊆ really “=” or “⊊”?



Regular expressions ≡ NFAs ≡ DFAs

Theorem: For any NFA, there is a regular expression
that accepts the same language

Corollary:  A language is recognized by a DFA (or NFA) 
if and only if it has a regular expression

You need to know these facts
– the construction for the Theorem is sketched below

but you will not be tested on it



New Machinery: Generalized NFAs 

• Like NFAs but allow
– parallel edges (between the same pair of states)
– regular expressions as edge labels

NFAs already have edges labeled ɛ or a

• Machine can follow an edge labeled by A by reading 
a string of input characters in the language of A
– (if A is a or ɛ, this matches the original definition, but

we now allow REs built with recursive steps.)



New Machinery: Generalized NFAs 

• Like NFAs but allow
– parallel edges
– regular expressions as edge labels

NFAs already have edges labeled ɛ or a

• The label of a path is now the concatenation of the 
regular expressions on those edges, making it a 
regular expression

• Def: A string x is accepted by a generalized NFA iff 
there is a path from start to final state labeled by 
a regular expression whose language contains x



Construction Idea

Add new start state and final state

ɛ

ɛ

ɛ

A

Then delete the original states one by one, 
adding edges to keep the same language,
until the graph looks like:



Starting from an NFA

A

Then delete the original states one by one,
adding edges to keep the same language,
until the graph looks like:

Final graph has only one path to the accepting state, 
which is labeled by A,
so it accepts iff x is in the language of A

Thus, A is a regular expression with the same 
language as the original NFA.



Only two simplification rules

• Rule 1:  For any two states q1 and q2 with parallel 
edges (possibly q1=q2), replace

If the machine would have used the edge labeled A 
by consuming an input x in the language of A, it can 
instead use the edge labeled A⋃B.

Furthermore, this new edge does not allow transitions 
for any strings other than those that matched A or B.

q1 q2

A

B
by A⋃B

q1 q2



Only two simplification rules

• Rule 2: Eliminate non-start/accepting state q3 by 
creating direct edges that skip q3

for every pair of states q1, q2 (even if q1=q2)

Any path from q1 to q2 would have to match ABnC for 
some n (the number of times the self loop was used), 
so the machine can use the new edge instead. New 
edge only allows strings that were allowed before.

A
B

C AB*Cq1 q3 q2 q1 q2
becomes



While the box contains some state s:
for all states r, t with (r, s) and (s, t) in E:

create a direct edge (r, t) by Rule 2
delete s (no longer needed)
merge all parallel edges by Rule 1

Construction Overview

Add new start state and final state

ɛ

ɛ

ɛ



Construction Overview

A

While the box contains some state s:
for all states r, t with (r, s) and (s, t) in E:

create a direct edge (r, t) by Rule 2
delete s (no longer needed)
merge all parallel edges by Rule 1

When the loop exits, the graph looks like this:

A is a regular expression with the same language 
as the original NFA.



Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum
– Accept strings from {0,1,2}* where the digits 

mod 3 sum of the digits is 0
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Splicing out a state t1

Create direct edges between neighbors of t1
(so that we can delete it afterward)

t0 t2

t1

0

0

1 1

1

2

22
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Splicing out a state t1

Regular expressions to add to edges

t0 t2

t1

0

0

1 1

1

2

22

t0→t1→t0 :   10*2
t0→t1→t2 :   10*1
t2→t1→t0 :   20*2
t2→t1→t2 :   20*1

0

s
ɛ

f

ɛ



Splicing out a state t1

Delete t1 now that it is redundant

t0 t2

0 ∪ 20*1
2 ∪ 10*1

t0→t1→t0 :   10*2
t0→t1→t2 :   10*1
t2→t1→t0 :   20*2
t2→t1→t2 :   20*1

0 ∪ 10*2

s
ɛ

f

ɛ
1 ∪ 20*2



Splicing out a state t1

Create direct edges between neighbors of t2
(so that we can delete it afterward)

t0 t2

0 ∪ 20*1
2 ∪ 10*1

0 ∪ 10*2

s
ɛ

f

ɛ
1 ∪ 20*2



Splicing out a state t1

Regular expressions to add to edges

t0 t2

0 ∪ 20*1
2 ∪ 10*1

0 ∪ 10*2

s
ɛ

f

ɛ
1 ∪ 20*2

R1:   0 ∪ 10*2
R2:   2 ∪ 10*1
R3:   1 ∪ 20*2
R4:   0 ∪ 20*1



Splicing out state t2 (and then t0)

R1:   0 ∪ 10*2
R2:   2 ∪ 10*1
R3:   1 ∪ 20*2
R4:   0 ∪ 20*1

Delete t2 now that it is redundant

t0R5

f

ɛ

s
ɛ

R5:   R1 ∪ R2R4*R3



Splicing out state t2 (and then t0)

R1:   0 ∪ 10*2
R2:   2 ∪ 10*1
R3:   1 ∪ 20*2
R4:   0 ∪ 20*1
R5:   R1 ∪ R2R4*R3

Create direct (s,f) edge so we can delete t0

t0R5

f

ɛ

s
ɛ



Splicing out state t2 (and then t0)

R1:   0 ∪ 10*2
R2:   2 ∪ 10*1
R3:   1 ∪ 20*2
R4:   0 ∪ 20*1
R5:   R1 ∪ R2R4*R3

Regular expressions to add to edges

t0R5

f

ɛ

s
ɛ

t0→t1→t0: R5 *



Splicing out state t2 (and then t0)

R1:   0 ∪ 10*2
R2:   2 ∪ 10*1
R3:   1 ∪ 20*2
R4:   0 ∪ 20*1
R5:   R1 ∪ R2R4*R3

Delete t0 now that it is redundant

R6
fs

R6:   R5*



Splicing out state t2 (and then t0)

R1:   0 ∪ 10*2
R2:   2 ∪ 10*1
R3:   1 ∪ 20*2
R4:   0 ∪ 20*1
R5:   R1 ∪ R2R4*R3
R6:   R5*

Regular expressions to add to edges

R6
fs

Final regular expression: R6 =
(0 ∪ 10*2 ∪ (2 ∪	10*1)(0 ∪ 20*1)*(1 ∪	20*2))*



The story so far...
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The story so far...
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Next time:  Is this ⊆ really “=” or “⊊”?


