CSE 311: Foundations of Computing

Lecture 24b: NFAs — Regular expressions




The story so far...

REs

IN

CFGs

DFAs NFAs



Regular expressions € NFAs = DFAs

We have shown how to build an optimal DFA for every
regular expression

— Build NFA
— Convert NFA to DFA using subset construction
— Minimize resulting DFA

Thus, we could now implement a RegExp library
— most RegExp libraries actually simulate the NFA

— (even better: one can combine the two approaches:
apply DFA minimization lazily while simulating the NFA)



The story so far...

REs

IN

CFGs

DFAs NFAs

s this € really “=” or “&”?



Regular expressions = NFAs = DFAs

Theorem: For any NFA, there is a regular expression
that accepts the same language

Corollary: A language is recognized by a DFA (or NFA)
if and only if it has a regular expression

You need to know these facts

— the construction for the Theorem is sketched below
but you will not be tested on it



New Machinery: Generalized NFAs

* Like NFAs but allow
— parallel edges (between the same pair of states)

— regular expressions as edge labels
NFAs already have edges labeled € or a

* Machine can follow an edge labeled by A by reading
a string of input characters in the language of A

— (if Ais a or g, this matches the original definition, but
we now allow REs built with recursive steps.)




New Machinery: Generalized NFAs

* Like NFAs but allow
— parallel edges

— regular expressions as edge labels
NFAs already have edges labeled € or a

 The label of a path is now the concatenation of the
regular expressions on those edges, making it a
regular expression

* Def: A string x is accepted by a generalized NFA iff
there is a path from start to final state labeled by
a regular expression whose language contains x



Construction Idea

Add new start state and final state

€

>O0—E10 _>»o

€

Then delete the original states one by one,
adding edges to keep the same language,
until the graph looks like:

e A 0




Starting from an NFA

Then delete the original states one by one,
adding edges to keep the same language,
until the graph looks like:

>0 A 0

Final graph has only one path to the accepting state,
which is labeled by A,
so it accepts iff x is in the language of A

Thus, A is a regular expression with the same
language as the original NFA.



Only two simplification rules

* Rule 1: For any two states q, and q, with parallel
edges (possibly q,=q,), replace

If the machine would have used the edge labeled A
by consuming an input x in the language of A, it can
instead use the edge labeled AUB.

Furthermore, this new edge does not allow transitions
for any strings other than those that matched A or B.



Only two simplification rules

* Rule 2: Eliminate non-start/accepting state q; by
creating direct edges that skip q,

@ A )Bq@ c becomes @ AB*C

for every pair of states q,, q, (even if q,=q,)

Any path from q, to q, would have to match AB"C for
some n (the number of times the self loop was used),
so the machine can use the new edge instead. New
edge only allows strings that were allowed before.



Construction Overview

Add new start state and final state

€

>O—E0 _>»o

€

While the box contains some state s:
for all states r, t with (r, s) and (s, t) in E:
create a direct edge (r, t) by Rule 2
delete s (no longer needed)
merge all parallel edges by Rule 1



Construction Overview

While the box contains some state s:
for all states r, t with (r, s) and (s, t) in E:
create a direct edge (r, t) by Rule 2
delete s (no longer needed)
merge all parallel edges by Rule 1

When the loop exits, the graph looks like this:

e A 0

A is a regular expression with the same language
as the original NFA.



Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

— Accept strings from {0,1,2}* where the digits
mod 3 sum of the digits is O




Splicing out a state t,

Create direct edges between neighbors of t,
(so that we can delete it afterward)




Splicing out a state t,

Regular expressions to add to edges

to>t 2>ty 10*2
to>t >t 10*1
t,>t,>t,: 20*2
t,>t, >t 20*1




Splicing out a state t,

Delete t, now that it is redundant

ty2>t 21
ty2>t 2t
t,2>t, 2>t
t,2>t,>t,

10*2
10*1
20%2
20*1

€
2 U 10*1

O U 20*1

0u 10*2@ ty )2
1U 2072

0



Splicing out a state t,

Create direct edges between neighbors of t,
(so that we can delete it afterward)

E 0 U 20*1

2 U 10*1 Q
0 U 10%2 C to )2 t,
1U 20%2




Splicing out a state t,

Regular expressions to add to edges

: 0U10*2
: 2U10*1
: 1U20%*2
: 0U20*1

€
2 U 10*1

O U 20*1

0u 10*2@ t )
1U 2072

OO



Splicing out state t, (and then t;)

Delete t, now that it is redundant

R;: 0U 10%2
R,: 2 U 10*1
Ry: 1U20%2
R,: 0U20*1




Splicing out state t, (and then t;)

Create direct (s,f) edge so we can delete t,

R;: 0U 10%2
R,: 2 U 10*1
Ry: 1U20%2
R,: 0U20*1
R:: R; UR,R,*R,




Splicing out state t, (and then t;)

Regular expressions to add to edges

R;: 0U 10%2
R,: 2 U 10*1
Ry: 1U20%2
R,: 0U20*1
R:: R; UR,R,*R,




Splicing out state t, (and then t;)

Delete t, now that it is redundant

. 0U 10*2
. 2U 10*1
. 1U 20%2
. 0 U 20*1
. R, UR,R,*R;

Rs: R:*




Splicing out state t, (and then t;)

Regular expressions to add to edges

R;: 0U 10%2
R,: 2 U 10*1
Ry: 1U20%2

Ry 0U20%1 _,@ Ro @
Rs: Ry U RyR,*R;

Re: R:*

Final regular expression: R; =
(OU10*2 U (2 U 10*1)(0 U 20*1)*(1 U 20*2))*



The story so far...

REs C CFGs

DFAs NFAs



The story so far...

REs C CFGs

DFAs NFAs

Next time: Is this € really “=" or “&”?




