
CSE 311: Foundations of Computing

Lecture 24:  NFAs, Regular expressions, and NFA→DFA



Administrivia

• No lecture Wednesday
– since some of you may be traveling 

• Will have a reading for Wednesday
– since you still want to learn something
– posted on the web site



HW8

• Due next Wednesday
– so that we can hand out solutions on Friday

• Please do not wait until next Monday to start

• Material will be heavily featured on the final
– two examples for each algorithm from last two lectures
– that plus 1-2 from practice material should be enough



Recall: Deterministic Finite Automata (DFA)

• Def:  x is in the language recognized by an DFA if 
and only if x labels a path from the start state to 
some final state

• Path v0, v1, ..., vn with v0 = s0 and label x describes 
a correct simulation of the DFA on input x
– i-th step must match the i-th character of x

s0 s2 s3s1
111

0,1

0

0

0



Last time: Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled 
by symbols (like DFA) but
– Not required to have exactly 1 edge out of each state 

labeled by each symbol--- can have 0 or >1
– Also can have edges labeled by empty string ε

• Def:  x is in the language recognized by an NFA if 
and only if x labels a path from the start state to 
some final state

s0 s2 s3s1

111

0,10,1



0,1

s3 s2 s1 s0
0,1 0,11

Last time: Parallel Exploration view of an NFA

Input string  0101100

s3

0 1 0 1 1 0 0
s3

s1

s3

s2

s3

s0

s1

s3

s0

s2

s3 s3

s0

X

s3

s1

s2

X



Last time: Three ways of thinking about NFAs

• Outside observer:  Is there a path labeled by x from 
the start state to some final state?  

• Parallel exploration:  The NFA computation runs all 
possible computations on x step-by-step at the same 
time in parallel

• Perfect guesser: The NFA has input x and whenever 
there is a choice of what to do it magically guesses a 
good one (if one exists)



001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

Last time: Compare with the smallest DFA
0,1

s3 s2 s1 s0
0,1 0,11



The story so far...

REs

DFAs NFAs

CFGs



The story so far...

⊆

⊆

REs

DFAs NFAs

CFGs



Theorem: For any set of strings (language) 𝐴
described by a regular expression, there is an 
NFA that recognizes 𝐴.  

Proof idea:   Structural induction based on the 
recursive definition of regular expressions...

NFAs and regular expressions



Regular Expressions over S

• Basis:
– ɛ is a regular expression
– a is a regular expression for any a Î S

• Recursive step:
– If A and B are regular expressions then so are:

A È B
AB
A*



• Case ɛ:

• Case a:

Base Case



• Case ɛ:

• Case a:

Base Case



• Case ɛ:

• Case a:

Base Case

a



Inductive Hypothesis

• Suppose that for some regular expressions
A and B there exist NFAs NA and NB such 
that NA recognizes the language given by A 
and NB recognizes the language given by B

NA NB



Inductive Step

Case A È B:

NA

NB



Inductive Step

Case A È B:

ɛ

ɛ

NA

NB



Inductive Step

Case AB:

NA NB



Inductive Step

Case AB:

ɛ

ɛ

NA NB



Inductive Step

Case A*

NA



Inductive Step

Case A*

ɛ

ɛ

ɛ
NA



Build an NFA for (01 È1)*0



Solution

(01 È1)*0

0
ɛ

ɛ

ɛ

ɛ

0

1

1

ɛ

ɛ

ɛ

ɛ

ɛ



The story so far...

⊆

⊆

REs

DFAs NFAs

CFGs

⊆



NFAs and DFAs

Every DFA is an NFA
– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?



NFAs and DFAs

Every DFA is an NFA
– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?   No!

Theorem:  For every NFA there is a DFA that 
recognizes exactly the same language



Three ways of thinking about NFAs

• Outside observer:  Is there a path labeled by x from 
the start state to some final state?  

• Perfect guesser: The NFA has input x and whenever 
there is a choice of what to do it magically guesses a 
good one (if one exists)

• Parallel exploration:  The NFA computation runs all 
possible computations on x step-by-step at the same 
time in parallel



0,1

s3 s2 s1 s0
0,1 0,11

Parallel Exploration view of an NFA

Input string  0101100

s3 s3 s3 s3 s3 s3 s3

0 1 0 1 1 0 0

s2 s1 s0

s2 s1 s0

s2 s1 s0

s3

X

X



Conversion of NFAs to a DFAs

• Construction Idea:
– The DFA keeps track of ALL states reachable in 

the NFA along a path labeled by the input so far
(Note: not all paths; all last states on those paths.)

– There will be one state in the DFA for each 
subset of states of the NFA that can be reached 
by some string



Conversion of NFAs to a DFAs

New start state for DFA
– The set of all states reachable from the start 

state of the NFA using only edges labeled ɛ

a,b,e,f

f

e

ba
ɛ

ɛ

ɛ

NFA DFA



Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of 
states of the NFA and each symbol s
– Add an edge labeled s to state corresponding to T, the 

set of states of the NFA reached by 
· starting from some state in S, then
· following one edge labeled by s, and
then following some number of edges labeled by ɛ

– T will be Æ if no edges from S labeled s exist

f

e

b

ɛ

ɛ
c

d

g
ɛ

1

1

1

1

b,e,f c,d,e,g1



Conversion of NFAs to a DFAs

Final states for the DFA
– All states whose set contain some final state of 

the NFA

a,b,c,e
ce

ba

NFA
DFA



Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

DFA



Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA



Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c 

1



Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c 

1

b 

b,c

1

0



Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c 

1

b 

b,c

1

0

Æ

10



Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c 

1

b 

b,c

1

0

Æ

1

0,1

0



Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c 

1

b 

b,c

1

0

a,b,c

Æ

1

0,1

0

0

1



Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c 

1

b 

b,c

1

0

a,b,c

Æ

1

0,1

0

0

1

1
0



The story so far...

⊆

=

REs

DFAs NFAs

CFGs

⊆



Regular expressions ⊆ NFAs ≡ DFAs

We have shown how to build an optimal DFA for every 
regular expression
– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA



Regular expressions ≡ NFAs ≡ DFAs

We have shown how to build an optimal DFA for every 
regular expression
– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA

Theorem:  A language is recognized by a DFA (or NFA) 
if and only if it has a regular expression

You need to know this fact (though you will not be tested 
on the details). Algorithm described in Wed reading.



The story so far...

⊆

=

REs

DFAs NFAs

CFGs

=


