CSE 311: Foundations of Computing

Lecture 24: NFAs, Regular expressions, and NFA→DFA

- No lecture Wednesday
 - since some of you may be traveling
- Will have a reading for Wednesday
 - since you still want to learn something
 - posted on the web site

- Due next Wednesday
 - so that we can hand out solutions on Friday
- Please do not wait until next Monday to start
- Material will be heavily featured on the final
 - two examples for each algorithm from last two lectures
 - that plus 1-2 from practice material should be enough

Recall: Deterministic Finite Automata (DFA)

 Def: x is in the language recognized by an DFA if and only if x labels a path from the start state to some final state

• Path v_0 , v_1 , ..., v_n with $v_0 = s_0$ and label x describes a correct simulation of the DFA on input x

i-th step must match the i-th character of x

Last time: Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state
 labeled by each symbol— can have 0 or >1
 - Also can have edges labeled by empty string ϵ
- Def: x is in the language recognized by an NFA if and only if x labels a path from the start state to some final state

Last time: Parallel Exploration view of an NFA

Input string 0101100

Last time: Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)

Last time: Compare with the smallest DFA

The story so far...

Theorem: For any set of strings (language) *A* described by a regular expression, there is an NFA that recognizes *A*.

Proof idea: Structural induction based on the recursive definition of regular expressions...

• Basis:

- $-\epsilon$ is a regular expression
- **a** is a regular expression for any $a \in \Sigma$
- Recursive step:
 - If A and B are regular expressions then so are:
 - $\mathbf{A} \cup \mathbf{B}$

AB

A*

• Case ε:

• Case **a**:

• Case ε:

• Case **a**:

• Case ε:

• Case **a**:

• Suppose that for some regular expressions A and B there exist NFAs N_A and N_B such that N_A recognizes the language given by A and N_B recognizes the language given by B

Case $\mathbf{A} \cup \mathbf{B}$:

Case AB:

Case AB:

Case A*

 N_A

Case A*

(01 ∪1)*0

Every DFA is an NFA

- DFAs have requirements that NFAs don't have

Can NFAs recognize more languages?

Every DFA is an NFA

DFAs have requirements that NFAs don't have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language

Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel

Parallel Exploration view of an NFA

Input string 0101100

- Construction Idea:
 - The DFA keeps track of ALL states reachable in the NFA along a path labeled by the input so far (Note: not all *paths*; all *last states* on those paths.)
 - There will be one state in the DFA for each subset of states of the NFA that can be reached by some string

New start state for DFA

– The set of all states reachable from the start state of the NFA using only edges labeled ϵ

NFA

DFA

For each state of the DFA corresponding to a set S of states of the NFA and each symbol s

- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
 - \cdot starting from some state in S, then
 - \cdot following one edge labeled by s, and then following some number of edges labeled by ϵ
- T will be \varnothing if no edges from S labeled s exist

Final states for the DFA

 All states whose set contain some final state of the NFA

NFA

NFA

NFA

DFA

DFA

NFA

DFA

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Theorem: A language is recognized by a DFA (or NFA) if and only if it has a regular expression

You need to know this fact (though you will not be tested on the details). Algorithm described in Wed reading.

