CSE 311: Foundations of Computing

Lecture 24: NFAs, Regular expressions, and NFA \rightarrow DFA

Administrivia

- No lecture Wednesday
- since some of you may be traveling
- Will have a reading for Wednesday
- since you still want to learn something
- posted on the web site

HW8

- Due next Wednesday
- so that we can hand out solutions on Friday
- Please do not wait until next Monday to start
- Material will be heavily featured on the final
- two examples for each algorithm from last two lectures
- that plus 1-2 from practice material should be enough

Recall: Deterministic Finite Automata (DFA)

- Def: x is in the language recognized by an DFA if and only if x labels a path from the start state to some final state

- Path $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$ with $\mathrm{v}_{\mathrm{o}}=\mathrm{s}_{\mathrm{o}}$ and label x describes a correct simulation of the DFA on input x
- i-th step must match the i-th character of x

Last time: Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
- Not required to have exactly 1 edge out of each state labeled by each symbol- can have 0 or >1
- Also can have edges labeled by empty string ε
- Def: x is in the language recognized by an NFA if and only if x labels a path from the start state to some final state

Last time: Parallel Exploration view of an NFA

Input string 0101100

Last time: Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)

Last time: Compare with the smallest DFA

The story so far...

REs

CFGs

DFAs
NFAs

The story so far...

NFAs and regular expressions

Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...

Regular Expressions over Σ

- Basis:
$-\varepsilon$ is a regular expression
$-\boldsymbol{a}$ is a regular expression for any $a \in \Sigma$
- Recursive step:
- If A and B are regular expressions then so are:
$A \cup B$
AB
A*

Base Case

- Case ε :
- Case a:

Base Case

- Case ε :
- Case a:

Base Case

- Case ε :

$+$

- Case a:

Inductive Hypothesis

- Suppose that for some regular expressions A and B there exist NFAs N_{A} and N_{B} such that N_{A} recognizes the language given by A and N_{B} recognizes the language given by B

N_{A}

N_{B}

Inductive Step

Case $A \cup B$:

Inductive Step

Case $A \cup B$:

N_{B}

Inductive Step

Case AB:

N_{A}

N_{B}

Inductive Step

Case AB:

Inductive Step

Case A*

N_{A}

Inductive Step

Case A*

N_{A}

Build an NFA for (01 $\cup \mathbf{1}) * 0$

Solution

(01 $\cup 1$)* 0

The story so far...

NFAs and DFAs

Every DFA is an NFA

- DFAs have requirements that NFAs don't have

Can NFAs recognize more languages?

NFAs and DFAs

Every DFA is an NFA

- DFAs have requirements that NFAs don't have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language

Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel

Parallel Exploration view of an NFA

Input string 0101100

Conversion of NFAs to a DFAs

- Construction Idea:
- The DFA keeps track of ALL states reachable in the NFA along a path labeled by the input so far (Note: not all paths; all last states on those paths.)
- There will be one state in the DFA for each subset of states of the NFA that can be reached by some string

Conversion of NFAs to a DFAs

New start state for DFA

- The set of all states reachable from the start state of the NFA using only edges labeled ε

NFA

DFA

Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of states of the NFA and each symbol s

- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
- starting from some state in S, then
- following one edge labeled by s, and then following some number of edges labeled by $\boldsymbol{\varepsilon}$
- T will be \varnothing if no edges from S labeled s exist

Conversion of NFAs to a DFAs

Final states for the DFA

- All states whose set contain some final state of the NFA

NFA
DFA

Example: NFA to DFA

Example: NFA to DFA

The story so far...

Regular expressions \subseteq NFAs \equiv DFAs

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Regular expressions \equiv NFAs \equiv DFAs

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Theorem: A language is recognized by a DFA (or NFA) if and only if it has a regular expression

You need to know this fact (though you will not be tested on the details). Algorithm described in Wed reading.

The story so far...

