
CSE 311: Foundations of Computing

Lecture 23: Finite State Machine Minimization & NFAs

Finite State Machines

start

zero

one

0

1

1

0

0

1

“Start
here”

“If I get this symbol, follow the
arrow…” The circles are called “states”

We’re only in a single state at
any point in time…

The “double circle” means “the
input is good if it ends here”

Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0

s0 s1

t0 t2

t1

2 0,10,1

2

0

0

0
1 1

1

2 2

2

s0t0 s1t0

s0t1

s0t2 s1t1

s1t2
2

2

2

2
2

2

1

1

1

1

1

1

0

0 0

0 0

0

Strings over {0,1,2} w/ even number of 2’s and mod 3 sum 0

Strings over {0,1,2} w/ even number of 2’s or mod 3 sum 0

s0t0 s1t0

s0t1

s0t2 s1t1

s1t2
2

2

2

2
2

2

1

1

1

1

1

1

0

0 0

0 0

0

Strings over {0,1,2} w/ even number of 2’s or mod 3 sum 0

The set of binary strings with a 1 in the 3rd position from the start

The set of binary strings with a 1 in the 3rd position from the start

s0 s2 As1
10,10,1

0,1

R

0
0,1

The set of binary strings with a 1 in the 3rd position from the end

3 bit shift register

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

“Remember the last three bits”

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

10

00 01 10 11

11

1

0

0 0

0 0 0 01

1

1
1

The set of binary strings with a 1 in the 3rd position from the end

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

The set of binary strings with a 1 in the 3rd position from the end

The beginning versus the end

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00
0 1

0

0

00

s0 s2 As1
10,10,1

0,1

R

0 0,1

Adding Output to Finite State Machines

• So far we have considered finite state
machines that just accept/reject strings
– called “Deterministic Finite Automata” or DFAs

• Now we consider finite state machines
with output
– These are the kinds used as controllers

Vending Machine

Enter 15 cents in dimes or nickels
Press S or B for a candy bar

Vending Machine, v0.1

0 5 10 15

D D

N N N, D

B, S

Basic transitions on N (nickel), D (dime), B (butterfinger), S (snickers)

Vending Machine, v0.2

0’
[B]

5 10

15

Adding output to states: N – Nickel, S – Snickers, B – Butterfinger

15’
[N]

0

0”
[S]

N

N

N

N

N

B

D

D

D

D

D B

S

S

Vending Machine, v1.0

0’
[B]

5 10

15

Adding additional “unexpected” transitions to cover all symbols for each state

15’
[N]

0

0”
[S]

N

N

N

N

N

B

D

D

D

D

D
B

S

S

15”
[D]S

B

B,S

B,S

B,S

B,S
B,S

N

N

N

D

D

D

State Minimization

• Many different FSMs (DFAs) for the same
problem

• Take a given FSM and try to reduce its state
set by combining states
– Algorithm will always produce the unique

minimal equivalent machine (up to renaming of
states) but we won’t prove this

State Minimization Algorithm

1. Put states into groups based on their outputs (or
whether they are final states or not)

2. Repeat the following until no change happens
a. If there is a symbol s so that not all states in a group

G agree on which group s leads to, split G into smaller
groups based on which group the states go to on s

3. Finally, convert groups to states

G1

G2

G3

s
s

s

s

G10
G2

G3

s
s

s

s
G11

State Minimization Example

state
transition table

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their
outputs (or whether they are final states
or not)

present next state output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

State Minimization Example

state
transition table

present next state output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their
outputs (or whether they are final states
or not)

State Minimization Example

state
transition table

present next state output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their
outputs (or whether they are final states
or not)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go
to on s

State Minimization Example

state
transition table

present next state output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their
outputs (or whether they are final states
or not)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go
to on s

State Minimization Example

state
transition table

present next state output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their
outputs (or whether they are final states
or not)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go
to on s

State Minimization Example

state
transition table

present next state output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their
outputs (or whether they are final states
or not)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go
to on s

State Minimization Example

state
transition table

present next state output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their
outputs (or whether they are final states
or not)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go
to on s

State Minimization Example

state
transition table

present next state output
state 0 1 2 3
S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Finally convert groups to states:

Can combine states S0-S4 and
S3-S5.

In table replace all S4 with S0
and all S5 with S3

Minimized Machine

state
transition table

present next state output
state 0 1 2 3
S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S3 0
S2 S1 S3 S2 S0 1
S3 S1 S0 S0 S3 0

2
1

3

0

0

1

3

2

2
0

0

3

1,2

S0
[1]

S2
[1]

S1
[0]

S3
[0]

1,3

A Simpler Minimization Example

s0

s2 s3

s1
1

1

1

1

0

0

0

0

The set of all binary strings with # of 1’s ≣ # of 0’s (mod 2).

A Simpler Minimization Example

s0

s2 s3

s1
1

1

1

1

0

0

0

0

Split states into
final/non-final groups

Every symbol causes
the DFA to go from one
group to the other so
neither group needs to
be split

Minimized DFA

s0
s3

s1
s2

0,1

0,1

The set of all binary strings with even length.

Partial Correctness of Minimization Algorithm

• Prove this claim: after processing input 𝑥,
if the old machine was in state 𝑞,
then the new machine is in the state 𝑆 with 𝑞 ∈ 𝑆
– True after 0 characters processed
– If true after k characters processed,

then it’s true after k+1 characters processed:
By inductive hypothesis, after k steps, old machine is in
state 𝑞 and new one in state 𝑆 with 𝑞 ∈ 𝑆
By construction, every 𝑟 ∈ 𝑆 is taken to the same state 𝑆′
on input 𝑥()*, so 𝑞 is taken to some 𝑞′ ∈ 𝑆′.

• At end, since every 𝑟 ∈ 𝑆 is accepting or rejecting,
new machine gives correct answer.

Another way to look at DFAs

s0 s2 s3s1
111

0,1

0

0

0

Lemma: x is in the language recognized by a DFA iff
x labels a path from the start state to some accepting state

Definition: The label of a path in a DFA is the
concatenation of all the labels on its edges in order

Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled
by symbols (like DFA) but
– Not required to have exactly 1 edge out of each state

labeled by each symbol--- can have 0 or >1
– Also can have edges labeled by empty string ε

• Definition: x is in the language recognized by an
NFA if and only if x labels some path from the
start state to an accepting state

s0 s2 s3s1
111

0,10,1

Consider This NFA

What language does this NFA accept?

s0

s1

s5s4

1

1

1

0

1

s2 s3
1

0,1

Consider This NFA

What language does this NFA accept?

s0

s1

s5s4

1

1

1

0

1

s2 s3
1

0,1

10(10)* ⋃ 111 (0 ⋃ 1)*

NFA ε-moves

s0 s1

t0 t2

t1

2 0,10,1

2

0

0

0 1 1

1

2 2

2

q

ε

ε

NFA ε-moves

s0 s1

t0 t2

t1

2 0,10,1

2

0

0

0 1 1

1

2 2

2

q

ε

ε

Strings over {0,1,2} w/even # of 2’s OR sum to 0 mod 3

Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x from
the start state to some accepting state?

• Parallel exploration: The NFA computation runs all
possible computations on x step-by-step at the same
time in parallel

• Perfect guesser: The NFA has input x and whenever
there is a choice of what to do it magically guesses a
good one (if one exists)

NFA for set of binary strings with a 1 in the 3rd position from the end

NFA for set of binary strings with a 1 in the 3rd position from the end

0,1

s3 s2 s1 s0
0,1 0,11

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

Compare with the smallest DFA
0,1

s3 s2 s1 s0
0,1 0,11

0,1

s3 s2 s1 s0
0,1 0,11

Parallel Exploration view of an NFA

Input string 0101100

s3

0 1 0 1 1 0 0
s3

s1

s3

s2

s3

s0

s1

s3

s0

s2

s3 s3

s0

X

s3

s1

s2

X

