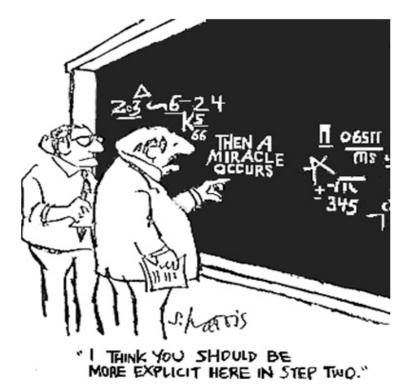
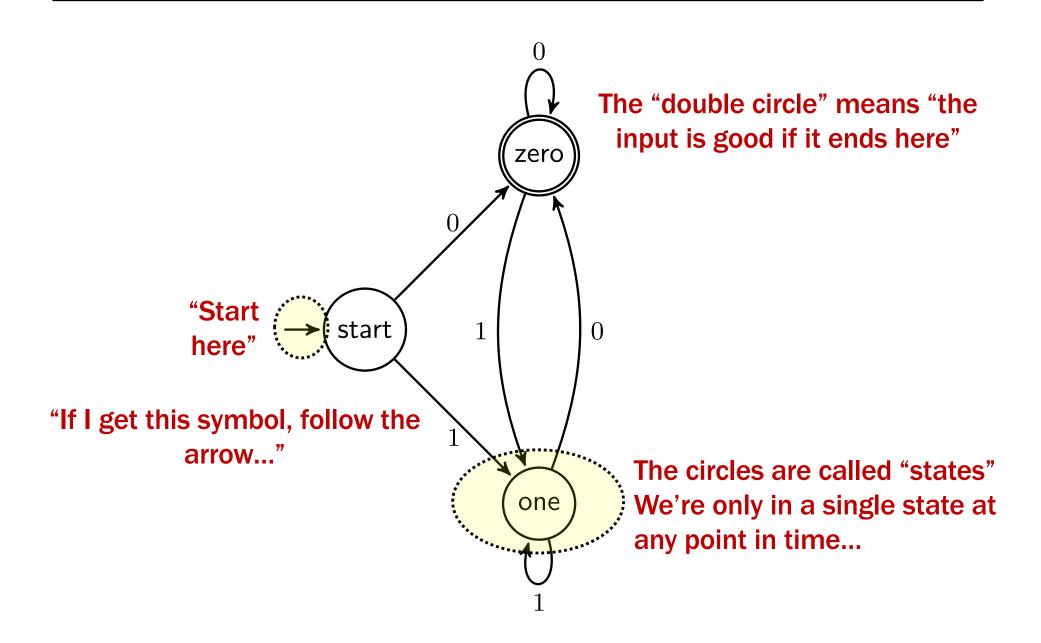
CSE 311: Foundations of Computing

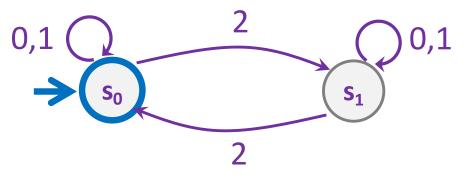
Lecture 23: Finite State Machine Minimization & NFAs



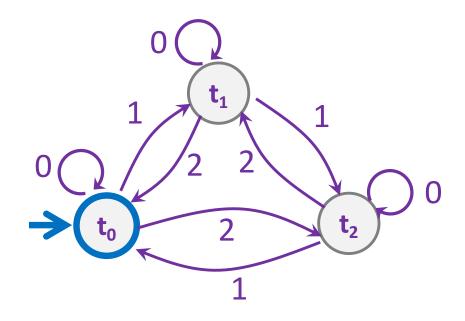
Finite State Machines

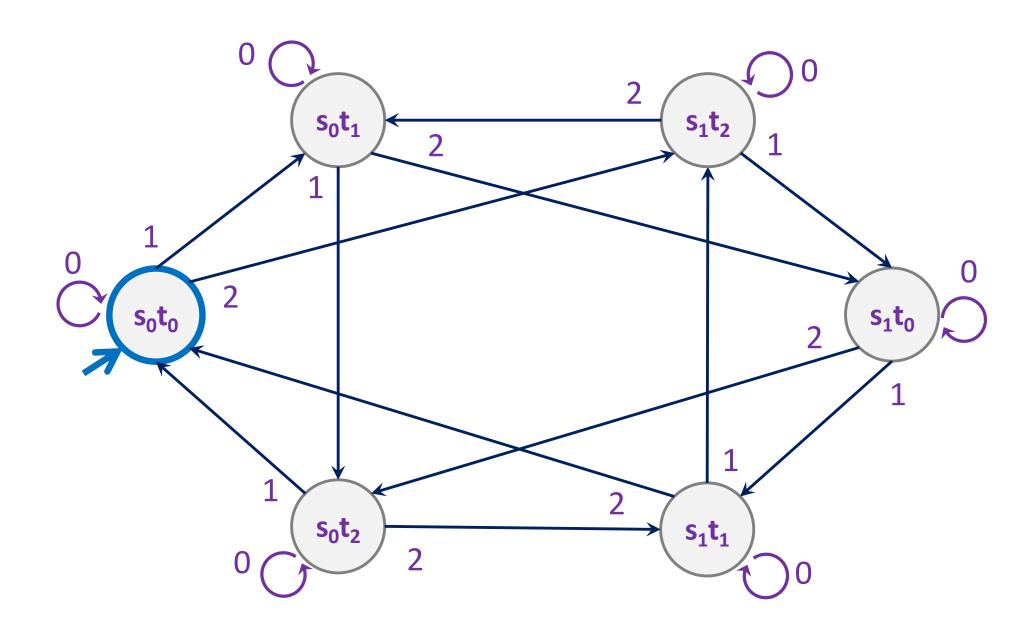


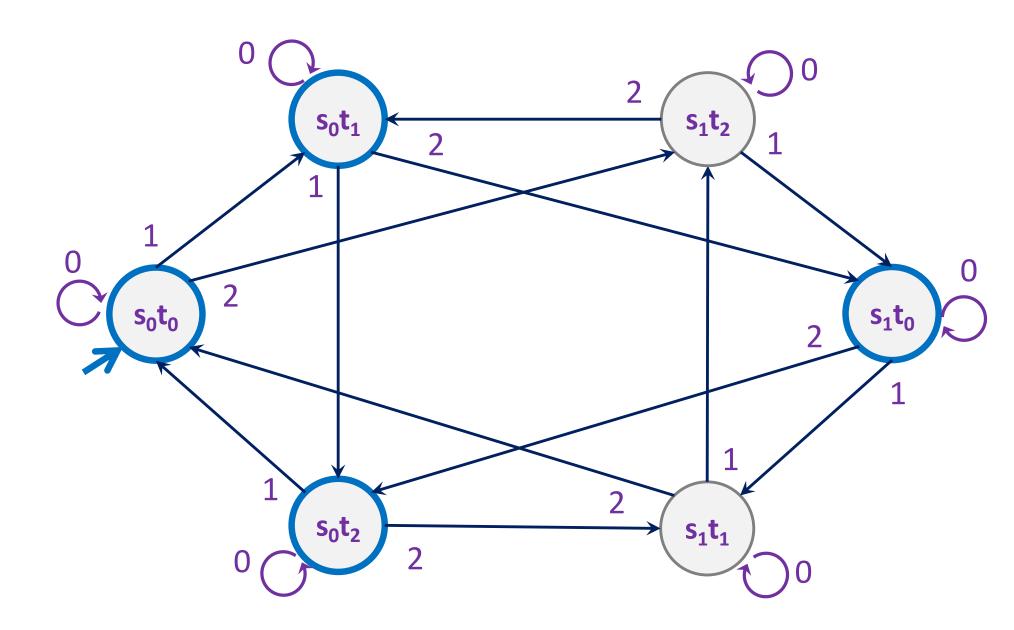
 M_1 : Strings with an even number of 2's



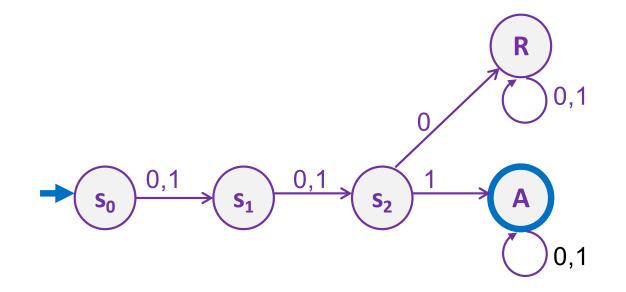
M₂: Strings where the sum of digits mod 3 is 0



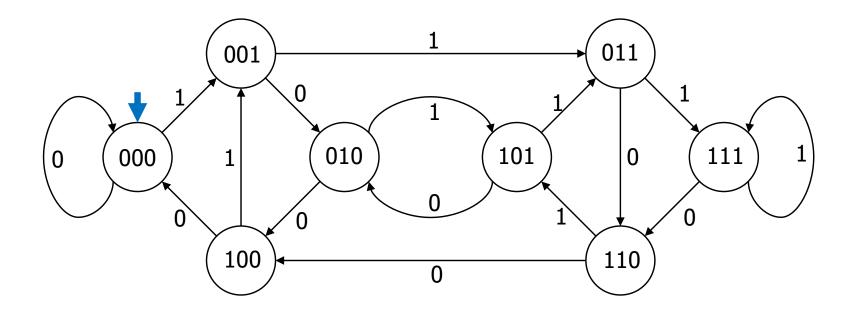




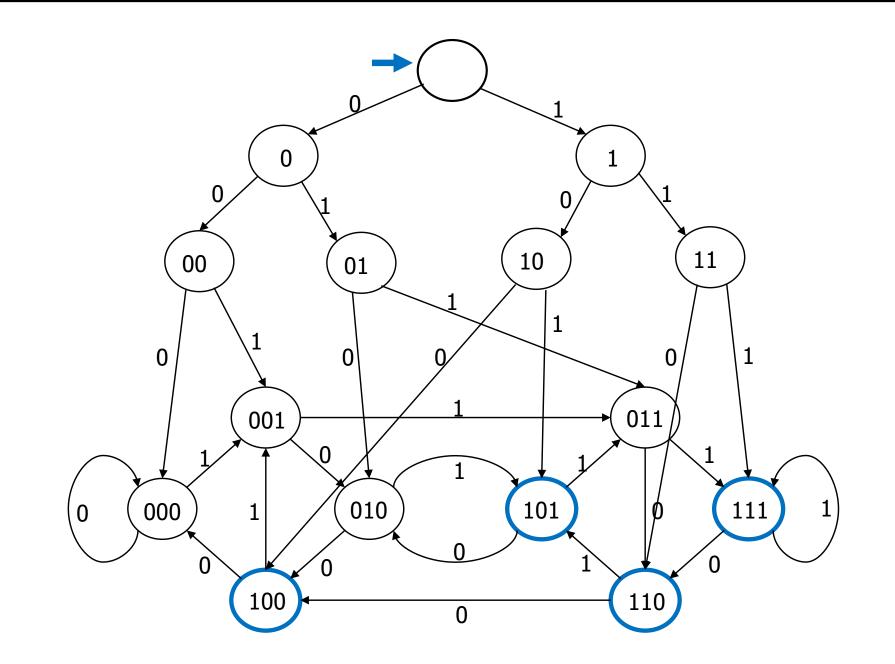
The set of binary strings with a 1 in the 3rd position from the start

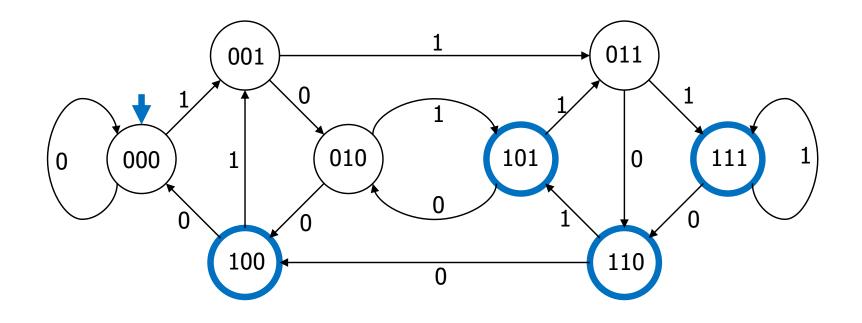


3 bit shift register "Remember the last three bits"

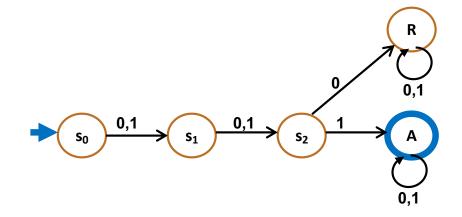


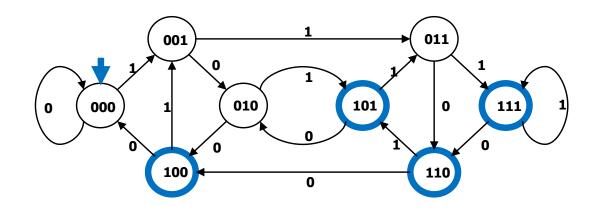
The set of binary strings with a 1 in the 3rd position from the end





The beginning versus the end





Adding Output to Finite State Machines

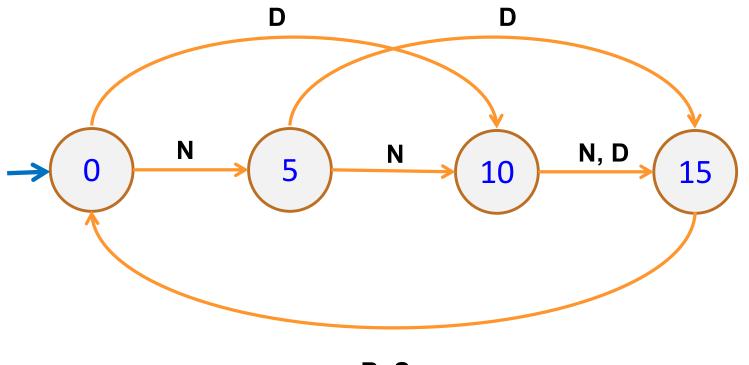
- So far we have considered finite state machines that just accept/reject strings

 called "Deterministic Finite Automata" or DFAs
- Now we consider finite state machines with output
 - These are the kinds used as controllers

Vending Machine

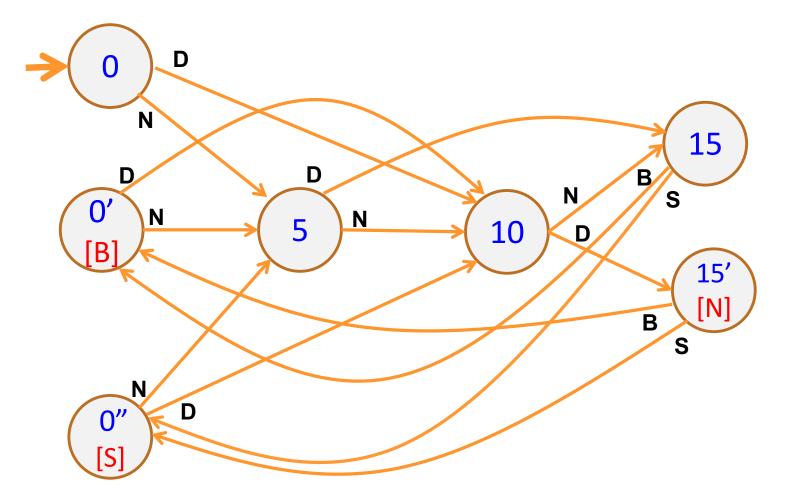
Enter 15 cents in dimes or nickels Press S or B for a candy bar

Vending Machine, v0.1



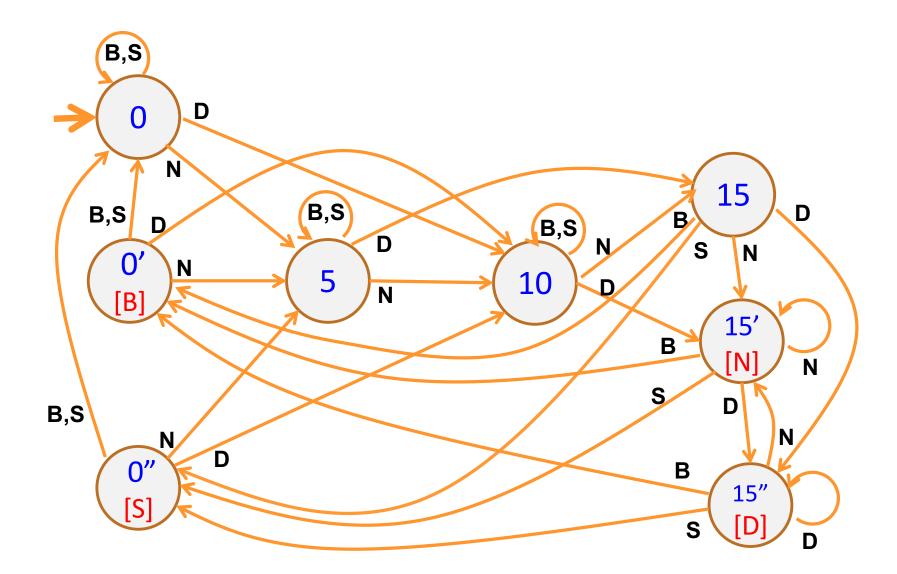
B, S

Basic transitions on N (nickel), D (dime), B (butterfinger), S (snickers)



Adding output to states: N – Nickel, S – Snickers, B – Butterfinger

Vending Machine, v1.0



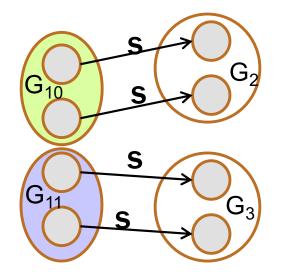
Adding additional "unexpected" transitions to cover all symbols for each state

- Many different FSMs (DFAs) for the same problem
- Take a given FSM and try to reduce its state set by combining states
 - Algorithm will always produce the unique minimal equivalent machine (up to renaming of states) but we won't prove this

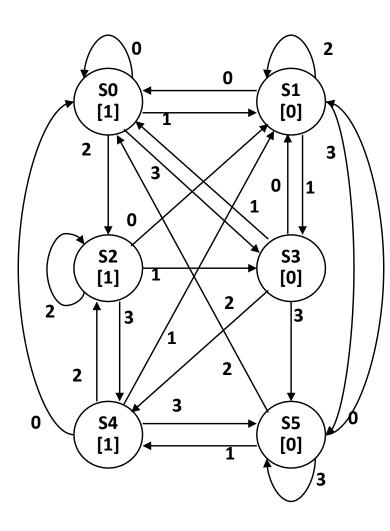
State Minimization Algorithm

- 1. Put states into groups based on their outputs (or whether they are final states or not)
- 2. Repeat the following until no change happens
 - a. If there is a symbol s so that not all states in a group
 G agree on which group s leads to, split G into smaller
 groups based on which group the states go to on s



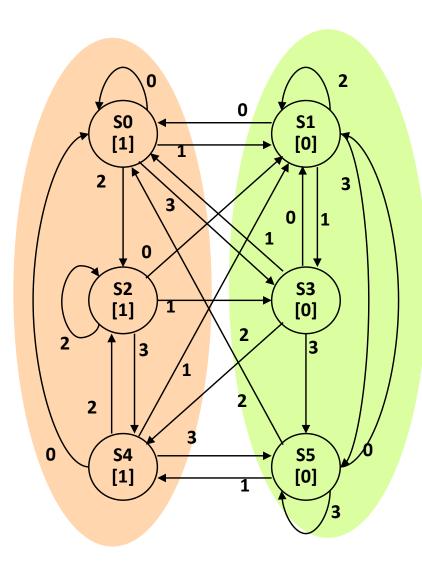


3. Finally, convert groups to states



present	I	next	output		
state	0	1	2	3	
SO	S0	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

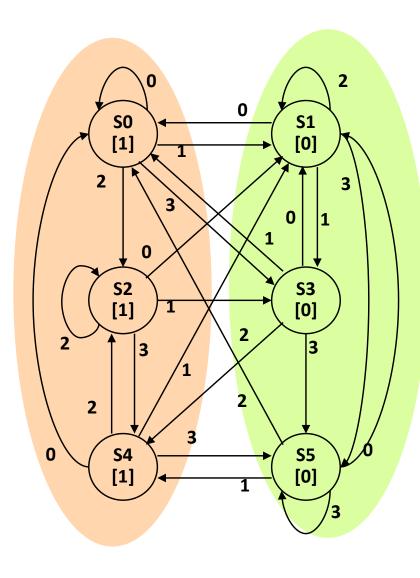
Put states into groups based on their outputs (or whether they are final states or not)



present		next	output		
state	0	1	2	3	
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

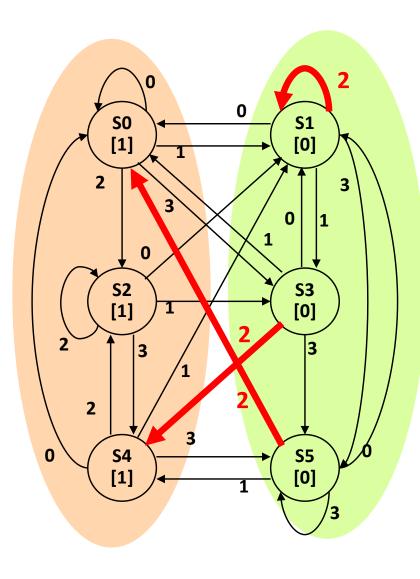
Put states into groups based on their outputs (or whether they are final states or not)



present		next	output		
state	0	1	2	3	
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

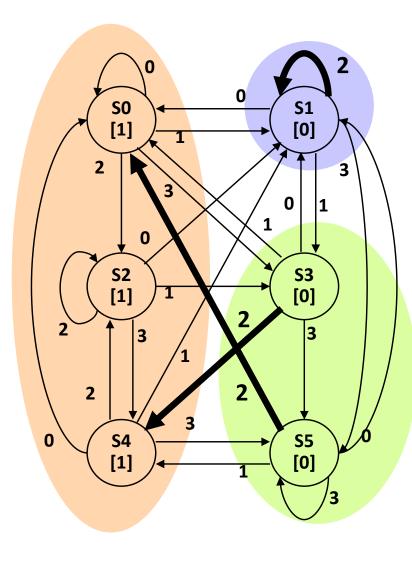
Put states into groups based on their outputs (or whether they are final states or not)



present		next	output		
state	0	1	2	3	
SO	SO	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

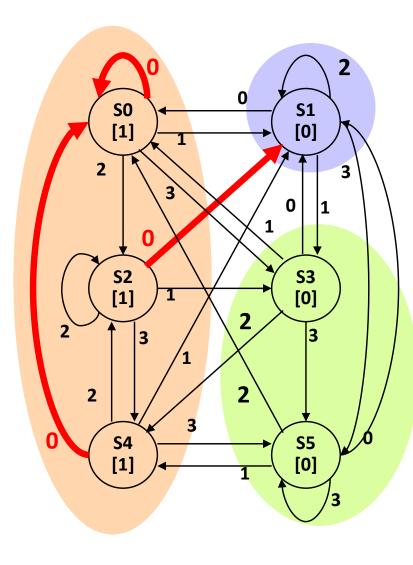
state transition table

Put states into groups based on their outputs (or whether they are final states or not)



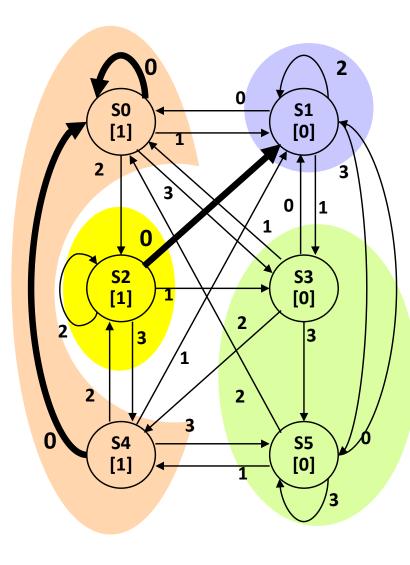
present	I	next	output		
state	0	1	2	3	
SO	S0	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

Put states into groups based on their outputs (or whether they are final states or not)



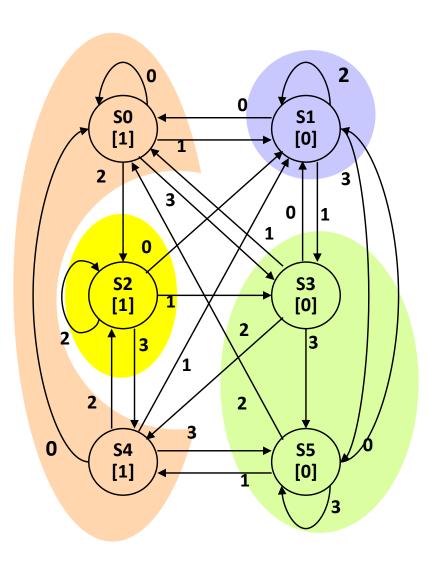
present	I	next	output		
state	0	1	2	3	-
SO	S0	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

Put states into groups based on their outputs (or whether they are final states or not)



present		next	output		
state	0	1	2	3	
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

Put states into groups based on their outputs (or whether they are final states or not)



present		next	output		
state	0	1	2	3	
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
<mark>S2</mark>	S1	S3	<mark>S2</mark>	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	<mark>S2</mark>	S5	1
S5	S1	S4	SO	S5	0

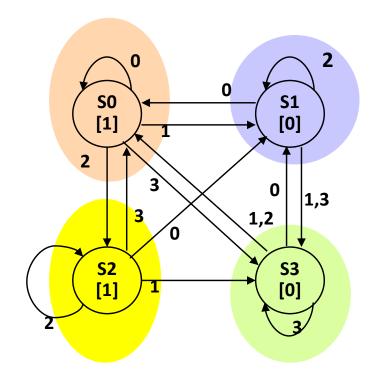
state transition table

Finally convert groups to states:

Can combine states S0-S4 and S3-S5.

In table replace all S4 with S0 and all S5 with S3

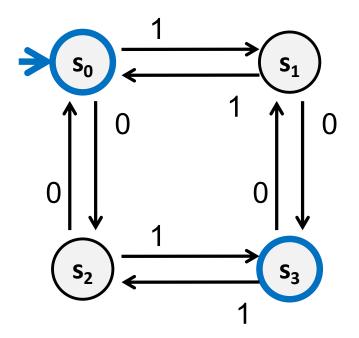
Minimized Machine



present		next	output		
state	0	1	2	3	
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S3	0
<mark>S2</mark>	S1	S3	S2	SO	1
S3	S1	SO	SO	S3	0

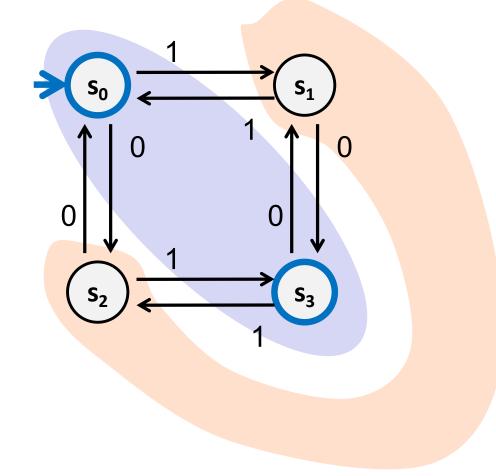
state transition table

A Simpler Minimization Example



The set of all binary strings with # of 1's \equiv # of 0's (mod 2).

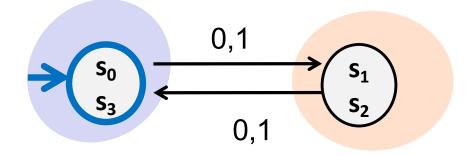
A Simpler Minimization Example



Split states into final/non-final groups

Every symbol causes the DFA to go from one group to the other so neither group needs to be split

Minimized DFA



The set of all binary strings with even length.

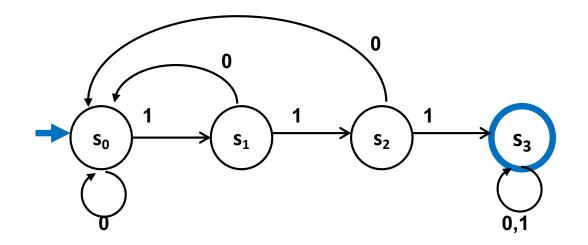
- Prove this claim: after processing input *x*,
 if the old machine was in state *q*,
 then the new machine is in the state *S* with *q* ∈ *S*
 - True after 0 characters processed
 - If true after k characters processed,
 then it's true after k+1 characters processed:

By inductive hypothesis, after k steps, old machine is in state q and new one in state S with $q \in S$

By construction, every $r \in S$ is taken to the same state S'on input x_{k+1} , so q is taken to some $q' \in S'$.

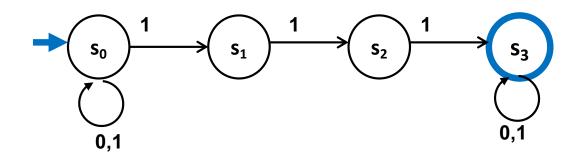
 At end, since every r ∈ S is accepting or rejecting, new machine gives correct answer. Definition: The label of a path in a DFA is the concatenation of all the labels on its edges in order

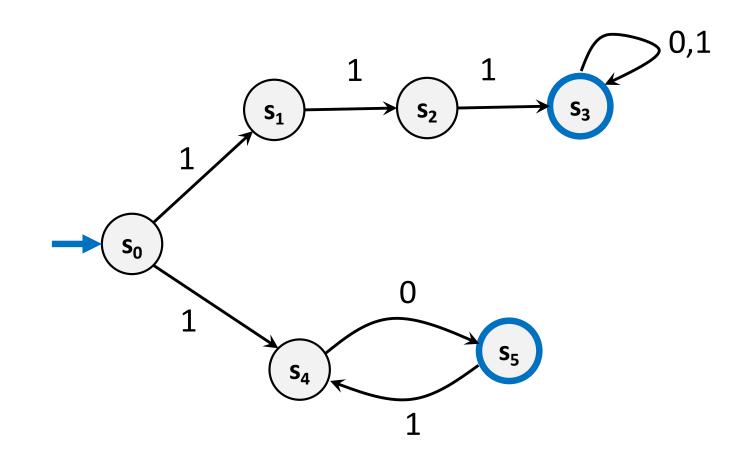
Lemma: x is in the language recognized by a DFA iff x labels a path from the start state to some accepting state



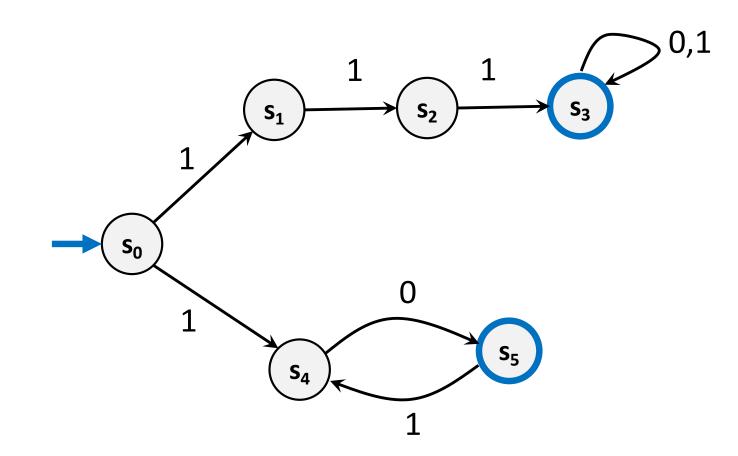
Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state
 labeled by each symbol— can have 0 or >1
 - Also can have edges labeled by empty string $\boldsymbol{\epsilon}$
- Definition: x is in the language recognized by an NFA if and only if x labels some path from the start state to an accepting state



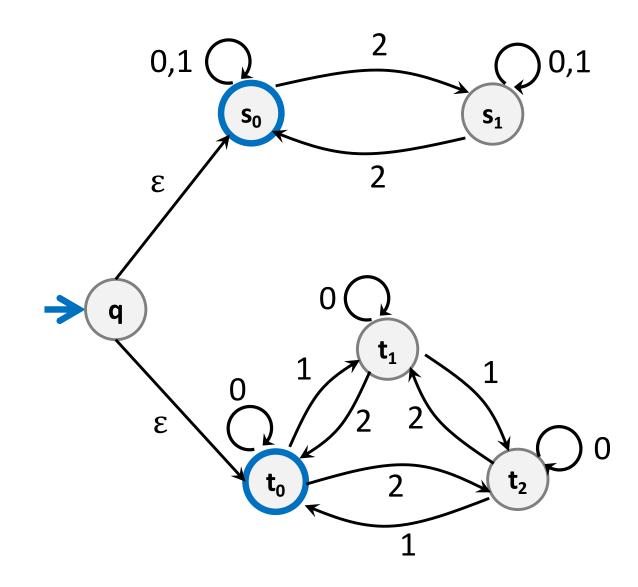


What language does this NFA accept?

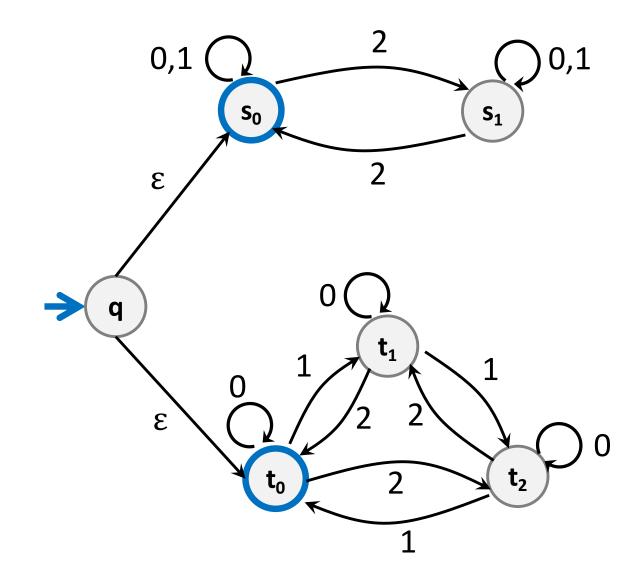


What language does this NFA accept?

10(10)* U 111 (0 U 1)*



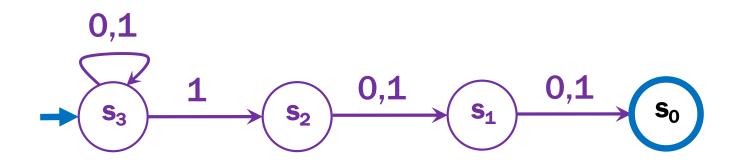
Strings over $\{0,1,2\}$ w/even # of 2's OR sum to 0 mod 3



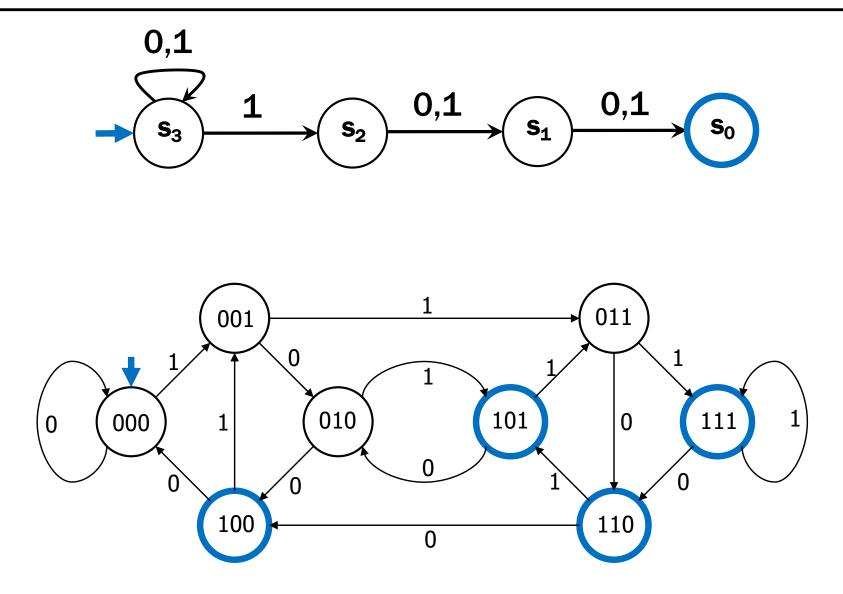
Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some accepting state?
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)

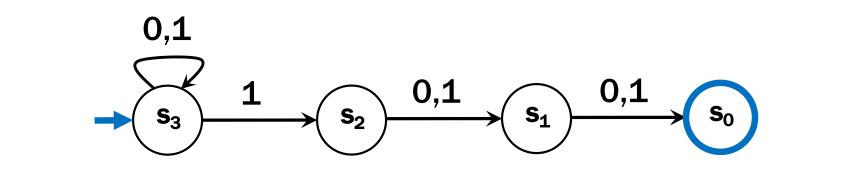
NFA for set of binary strings with a 1 in the 3rd position from the end



Compare with the smallest DFA



Parallel Exploration view of an NFA



Input string 0101100

