
CSE 311: Foundations of Computing

Lecture 23:  Finite State Machine Minimization & NFAs



Finite State Machines
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“Start 
here”

“If I get this symbol, follow the 
arrow…” The circles are called “states”

We’re only in a single state at 
any point in time…

The “double circle” means “the 
input is good if it ends here”



Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0
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Strings over {0,1,2} w/ even number of 2’s and mod 3 sum 0



Strings over {0,1,2} w/ even number of 2’s or mod 3 sum 0
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The set of binary strings with a 1 in the 3rd position from the start



The set of binary strings with a 1 in the 3rd position from the start
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The set of binary strings with a 1 in the 3rd position from the end



3 bit shift register
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“Remember the last three bits”



001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

10

00 01 10 11

11

1

0

0 0

0 0 0 01

1

1
1

The set of binary strings with a 1 in the 3rd position from the end



001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

The set of binary strings with a 1 in the 3rd position from the end



The beginning versus the end
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Adding Output to Finite State Machines

• So far we have considered finite state 
machines that just accept/reject strings
– called “Deterministic Finite Automata” or DFAs

• Now we consider finite state machines
with output
– These are the kinds used as controllers



Vending Machine

Enter 15 cents in dimes or nickels
Press S or B for a candy bar



Vending Machine, v0.1
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D D

N N N, D
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Basic transitions on N (nickel),  D (dime),  B (butterfinger), S (snickers)



Vending Machine, v0.2
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Adding output to states:  N – Nickel,  S – Snickers, B – Butterfinger
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Vending Machine, v1.0
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Adding additional “unexpected” transitions to cover all symbols for each state
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State Minimization

• Many different FSMs (DFAs) for the same 
problem

• Take a given FSM and try to reduce its state 
set by combining states
– Algorithm will always produce the unique 

minimal equivalent machine (up to renaming of 
states) but we won’t prove this



State Minimization Algorithm

1. Put states into groups based on their outputs (or 
whether they are final states or not)

2. Repeat the following until no change happens
a. If there is a symbol s so that not all states in a group 

G agree on which group s leads to, split G into smaller 
groups based on which group the states go to on s

3. Finally, convert groups to states
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State Minimization Example
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Put states into groups based on their
outputs (or whether they are final states
or not)

present next state        output
state 0 1 2 3
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S2 S1 S3 S2 S4 1
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S5 S1 S4 S0 S5 0
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State Minimization Example
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Finally convert groups to states:

Can combine states S0-S4 and
S3-S5.  

In table replace all S4 with S0 
and all S5 with S3



Minimized Machine

state 
transition table

present next state        output
state 0 1 2 3
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A Simpler Minimization Example
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The set of all binary strings with # of 1’s ≣ # of 0’s (mod 2).



A Simpler Minimization Example
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Split states into 
final/non-final groups

Every symbol causes 
the DFA to go from one 
group to the other so 
neither group needs to 
be split



Minimized DFA
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The set of all binary strings with even length.



Partial Correctness of Minimization Algorithm

• Prove this claim: after processing input 𝑥,
if the old machine was in state 𝑞,
then the new machine is in the state 𝑆 with 𝑞 ∈ 𝑆
– True after 0 characters processed
– If true after k characters processed,

then it’s true after k+1 characters processed:
By inductive hypothesis, after k steps, old machine is in 
state 𝑞 and new one in state 𝑆 with 𝑞 ∈ 𝑆
By construction, every 𝑟 ∈ 𝑆 is taken to the same state 𝑆′
on input 𝑥()*, so 𝑞 is taken to some 𝑞′ ∈ 𝑆′.

• At end, since every 𝑟 ∈ 𝑆 is accepting or rejecting, 
new machine gives correct answer.



Another way to look at DFAs

s0 s2 s3s1
111

0,1

0

0

0

Lemma:  x is in the language recognized by a DFA iff
x labels a path from the start state to some accepting state

Definition: The label of a path in a DFA is the 
concatenation of all the labels on its edges in order



Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled 
by symbols (like DFA) but
– Not required to have exactly 1 edge out of each state 

labeled by each symbol--- can have 0 or >1
– Also can have edges labeled by empty string ε

• Definition:  x is in the language recognized by an 
NFA if and only if x labels some path from the 
start state to an accepting state

s0 s2 s3s1
111

0,10,1



Consider This NFA

What language does this NFA accept?
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Consider This NFA

What language does this NFA accept?
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10(10)*  ⋃ 111 (0 ⋃ 1)* 



NFA ε-moves 
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NFA ε-moves 
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Strings over {0,1,2} w/even # of 2’s OR sum to 0 mod 3



Three ways of thinking about NFAs

• Outside observer:  Is there a path labeled by x from 
the start state to some accepting state?  

• Parallel exploration:  The NFA computation runs all 
possible computations on x step-by-step at the same 
time in parallel

• Perfect guesser: The NFA has input x and whenever 
there is a choice of what to do it magically guesses a 
good one (if one exists)



NFA for set of binary strings with a 1 in the 3rd position from the end



NFA for set of binary strings with a 1 in the 3rd position from the end
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Compare with the smallest DFA
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Parallel Exploration view of an NFA

Input string  0101100
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