CSE 311: Foundations of Computing

Lecture 21: Directed Graphs \& Finite State Machines

Last Class: Relations \& Composition

Let A and B be sets,
A binary relation from A to B is a subset of $A \times B$

Let A be a set,
A binary relation on A is a subset of $A \times A$

Last Class: Directed Graphs

$$
\begin{array}{ll}
G=(V, E) \quad & V-\text { vertices } \\
E-\text { edges, ordered pairs of vertices }
\end{array}
$$

Last Class: Representation of Relations

Directed Graph Representation (Digraph)

$\{(a, b),(a, a),(b, a),(c, a),(c, d),(c, e)(d, e)\}$

Last Class: Relation Composition

The composition of relation R and $S, R \circ S$ is the relation defined by:

$$
R \circ S=\{(\mathrm{a}, \mathrm{c}) \mid \exists \mathrm{b} \text { such that }(\mathrm{a}, \mathrm{~b}) \in R \text { and }(\mathrm{b}, \mathrm{c}) \in S\}
$$

Last Class: Relational Composition using Digraphs

If $S=\{(2,2),(2,3),(3, \mathbb{1})\}$ and $R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\}$
Compute $\boldsymbol{R} \circ \boldsymbol{S}$

Relational Composition using Digraphs

If $R=\{(\mathbf{1}, 2),(2,1),(1,3)\}$ and $R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\}$
Compute $\boldsymbol{R} \circ \boldsymbol{R}$

$$
\begin{array}{ll}
(a, c) \in R \circ R=R^{2} & \text { iff } \exists b((a, b) \in R \wedge(b, c) \in R) \\
& \text { iff } \exists b \text { such that } \mathrm{a}, \mathrm{~b}, \mathrm{c} \text { is a path }
\end{array}
$$

Last Class: Powers of a Relation

$$
\begin{aligned}
& \boldsymbol{R}^{\mathbf{0}}=\{(\boldsymbol{a}, \boldsymbol{a}) \mid \boldsymbol{a} \in A\} \quad \text { "the equality relation on } \boldsymbol{A}^{\prime \prime} \\
& \boldsymbol{R}^{n+1}=\boldsymbol{R}^{\boldsymbol{n}} \circ \boldsymbol{R} \text { for } \boldsymbol{n} \geq \mathbf{0}
\end{aligned}
$$

Paths in Relations and Graphs

Def: The length of a path in a graph is the number of edges in it (counting repetitions if edge used > once).

Elements of $\boldsymbol{R}^{\mathbf{0}}$ correspond to paths of length 0 .
Elements of $R^{1}=R$ are paths of length 1.
Elements of $\boldsymbol{R}^{\mathbf{2}}$ are paths of length 2.

Paths in Relations and Graphs

Def: The length of a path in a graph is the number of edges in it (counting repetitions if edge used > once).

Let \boldsymbol{R} be a relation on a set \boldsymbol{A}.
There is a path of length \boldsymbol{n} from \mathbf{a} to \mathbf{b} in the digraph for \boldsymbol{R} if and only if $(\mathbf{a}, \mathbf{b}) \in \boldsymbol{R}^{\boldsymbol{n}}$
(See section tomorrow for a complete proof.)

Connectivity In Graphs

Def: Two vertices in a graph are connected iff there is a path between them.

Let \boldsymbol{R} be a relation on a set \boldsymbol{A}. The connectivity relation \boldsymbol{R}^{*} consists of the pairs (a, b) such that there is a path from a to b in \boldsymbol{R}.

$$
R^{*}=\bigcup_{k=0}^{\infty} R^{k}
$$

Note: Rosen text uses the wrong definition of this quantity. What the text defines (ignoring $k=0$) is usually called \mathbf{R}^{+}

How Properties of Relations show up in Graphs

Let R be a relation on A.
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

How Properties of Relations show up in Graphs

Let R be a relation on A.
R is reflexive iff $(a, a) \in R$ for every $a \in A$

Co at every node

R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$

R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Transitive-Reflexive Closure

Add the minimum possible number of edges to make the relation transitive and reflexive.

The transitive-reflexive closure of a relation \boldsymbol{R} is the connectivity relation \boldsymbol{R}^{*}

Transitive-Reflexive Closure

Relation with the minimum possible number of extra edges to make the relation both transitive and reflexive.

The transitive-reflexive closure of a relation \boldsymbol{R} is the connectivity relation \boldsymbol{R}^{*}

n-ary Relations

Let $\boldsymbol{A}_{\mathbf{1}}, \boldsymbol{A}_{\mathbf{2}}, \ldots, \boldsymbol{A}_{\boldsymbol{n}}$ be sets. An \boldsymbol{n}-ary relation on these sets is a subset of $\boldsymbol{A}_{\mathbf{1}} \times \boldsymbol{A}_{\mathbf{2}} \times \cdots \times \boldsymbol{A}_{\boldsymbol{n}}$.

Relational Databases

STUDENT

Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Von Neuman	481080220	555	3.78
Russell	238082388	022	3.85
Einstein	238001920	022	2.11
Newton	1727017	333	3.61
Karp	348882811	022	3.98
Bernoulli	2921938	022	3.21

Database Operations: Projection

Find all offices: $\Pi_{\text {office }}$ (STUDENT)

Office
022
555
333

Find offices and GPAs: $\Pi_{\text {office,GPA }}$ (STUDENT)

Office	GPA
022	4.00
555	3.78
022	3.85
022	2.11
333	3.61
022	3.98
022	3.21

Database Operations: Selection

Find students with GPA > 3.9 : $\boldsymbol{\sigma}_{\text {GPA }>3.9}$ (STUDENT)

Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Karp	348882811	022	3.98

Retrieve the name and GPA for students with GPA > 3.9:
$\Pi_{\text {Student_Name,GPA }}\left(\sigma_{\text {GPA }>3.9}(\right.$ STUDENT $\left.)\right)$

Student_Name	GPA
Knuth	4.00
Karp	3.98

Relational Databases

STUDENT

Student_Name	ID_Number	Office	GPA	Course
Knuth	328012098	022	4.00	CSE311
Knuth	328012098	022	4.00	CSE351
Von Neuman	481080220	555	3.78	CSE311
Russell	238082388	022	3.85	CSE312
Russell	238082388	022	3.85	CSE344
Russell	238082388	022	3.85	CSE351
Newton	1727017	333	3.61	CSE312
Karp	348882811	022	3.98	CSE311
Karp	348882811	022	3.98	CSE312
Karp	348882811	022	3.98	CSE344
Karp	348882811	022	3.98	CSE351
Bernoulli	2921938	022	3.21	CSE351
	What's not so nice?			

Relational Databases

STUDENT								TAKES		
Student_Name	ID_Number	Office	GPA		ID_Number	Course				
Knuth	328012098	022	4.00		328012098	CSE311				
Von Neuman	481080220	555	3.78		328012098	CSE351				
Russell	238082388	022	3.85		481080220	CSE311				
Einstein	238001920	022	2.11		238082388	CSE312				
Newton	1727017	333	3.61		238082388	CSE344				
Karp	348882811	022	3.98		238082388	CSE351				
Bernoulli	2921938	022	3.21		1727017	CSE312				
				348882811	CSE311					

Database Operations: Natural Join

Student \bowtie Takes

Student_Name	ID_Number	Office	GPA	Course
Knuth	328012098	022	4.00	CSE311
Knuth	328012098	022	4.00	CSE351
Von Neuman	481080220	555	3.78	CSE311
Russell	238082388	022	3.85	CSE312
Russell	238082388	022	3.85	CSE344
Russell	238082388	022	3.85	CSE351
Newton	1727017	333	3.61	CSE312
Karp	348882811	022	3.98	CSE311
Karp	348882811	022	3.98	CSE312
Karp	348882811	022	3.98	CSE344
Karp	348882811	022	3.98	CSE351
Bernoulli	2921938	022	3.21	CSE351

Back to Languages

AND NOW BACK TO

 OUR REGGULARLY SCREDULED PROGRAMMNNG
Selecting strings using labeled graphs as "machines"

Finite State Machines

Which strings does this machine say are OK?

Which strings does this machine say are OK?

The set of all binary strings that end in 0

Finite State Machines

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

Finite State Machines

- Each machine designed for strings over some fixed alphabet Σ.
- Must have a transition defined from each state for every symbol in Σ.

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

What language does this machine recognize?

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

What language does this machine recognize?

The set of all binary strings that contain 111 or don't end in 1

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

Applications of FSMs (a.k.a. Finite Automata)

- Implementation of regular expression matching in programs like grep
- Control structures for sequential logic in digital circuits
- Algorithms for communication and cachecoherence protocols
- Each agent runs its own FSM
- Design specifications for reactive systems
- Components are communicating FSMs

Applications of FSMs (a.k.a. Finite Automata)

- Formal verification of systems
- Is an unsafe state reachable?
- Computer games
- FSMs implement non-player characters
- Minimization algorithms for FSMs can be extended to more general models used in
- Text prediction
- Speech recognition

Strings over $\{0,1,2\}$
M_{1} : Strings with an even number of 2's

Strings over $\{0,1,2\}$
M_{1} : Strings with an even number of 2's

Strings over $\{0,1,2\}$
M_{1} : Strings with an even number of 2's

M_{2} : Strings where the sum of digits mod 3 is 0

t_{2}

Strings over $\{0,1,2\}$
M_{1} : Strings with an even number of 2's

M_{2} : Strings where the sum of digits mod 3 is 0

What language does this machine recognize?

What language does this machine recognize?

The set of all binary strings with \# of 1's \equiv \# of 0 's (mod 2) (both are even or both are odd).

Strings over $\{0,1,2\} \mathbf{w} /$ even number of 2 's and mod 3 sum 0

$S_{1} t_{2}$

Strings over $\{0,1,2\} \mathbf{w} /$ even number of 2 's and mod 3 sum 0

