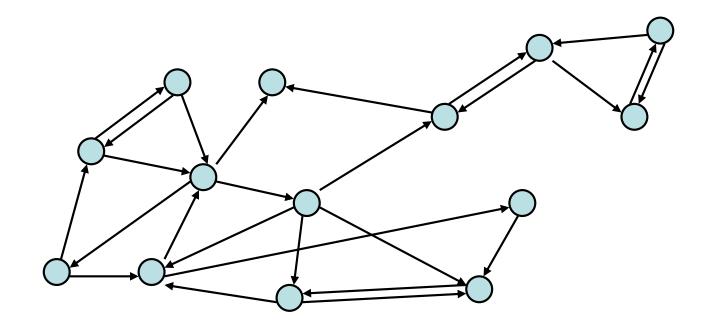
CSE 311: Foundations of Computing

Lecture 20: Relations and Directed Graphs



Let A and B be sets, A **binary relation from** A **to** B is a subset of A × B

Let A be a set,

A binary relation on A is a subset of $A \times A$

 \geq on \mathbb{N} That is: {(x,y) : x \geq y and x, y $\in \mathbb{N}$ } < on \mathbb{R}

That is: $\{(x,y) : x < y \text{ and } x, y \in \mathbb{R}\}$

= on Σ^* That is: {(x,y) : x = y and x, y $\in \Sigma^*$ }

\subseteq on $\mathcal{P}(U)$ for universe U That is: {(A,B) : A \subseteq B and A, B $\in \mathcal{P}(U)$ }

$$R_1 = \{(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)\}$$

$$R_2 = \{(x, y) \mid x \equiv y \pmod{5}\}$$

$$\mathbf{R}_3 = \{(c_1, c_2) \mid c_1 \text{ is a prerequisite of } c_2 \}$$

R₄ = {(s, c) | student s has taken course c }

Let R be a relation on A.

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$

R is **symmetric** iff $(a,b) \in R$ implies $(b,a) \in R$

R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

R is **transitive** iff $(a,b) \in R$ and $(b,c) \in R$ implies $(a,c) \in R$

- \geq on $\mathbb N$:
- < on $\mathbb R$:
- = on Σ^* :
- \subseteq on $\mathcal{P}(\mathsf{U})$:
- $R_2 = \{(x, y) \mid x \equiv y \pmod{5} \}:$
- $R_3 = \{(c_1, c_2) \mid c_1 \text{ is a prerequisite of } c_2 \}:$

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$ R is **symmetric** iff $(a,b) \in R$ implies $(b, a) \in R$ R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$ R is **transitive** iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

- \geq on \mathbb{N} : Reflexive, Antisymmetric, Transitive
- < on \mathbb{R} : Antisymmetric, Transitive
- = on Σ^* : Reflexive, Symmetric, Antisymmetric, Transitive
- \subseteq on $\mathcal{P}(U)$: Reflexive, Antisymmetric, Transitive
- $R_2 = \{(x, y) \mid x \equiv y \pmod{5}\}$: Reflexive, Symmetric, Transitive
- $R_3 = \{(c_1, c_2) | c_1 \text{ is a prerequisite of } c_2 \}$: Antisymmetric

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$ R is **symmetric** iff $(a,b) \in R$ implies $(b, a) \in R$ R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$ R is **transitive** iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$ Let *R* be a relation from *A* to *B*. Let *S* be a relation from *B* to *C*.

The composition of *R* and *S*, $R \circ S$ is the relation from *A* to *C* defined by:

 $R \circ S = \{ (a, c) \mid \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S \}$

Intuitively, a pair is in the composition if there is a "connection" from the first to the second.

$(a,b) \in Parent iff b is a parent of a$ $(a,b) \in Sister iff b is a sister of a$

When is $(x,y) \in Parent \circ Sister?$

When is $(x,y) \in Sister \circ Parent?$

 $R \circ S = \{(a, c) \mid \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\}$

Using the relations: Parent, Child, Brother, Sister, Sibling, Father, Mother, Husband, Wife express:

Uncle: b is an uncle of a

Cousin: b is a cousin of a

$$R^2 = R \circ R$$

= {(*a*, *c*) | ∃*b* such that (*a*, *b*) ∈ *R* and (*b*, *c*) ∈ *R* }

$$R^0 = \{(a, a) \mid a \in A\}$$
 "the equality relation on A "

$$R^1 = R = R^0 \circ R$$

$$R^{n+1}=R^n\circ R$$
 for $n\geq 0$

Recursively defined sets and functions describe these objects by explaining how to construct / compute them

But sets can also be defined non-constructively:

 $S = \{x : P(x)\}$

How can we define functions non-constructively? – (useful for writing a function specification) A function $f : A \rightarrow B$ (A as input and B as output) is a special type of relation.

A **function** f **from** A **to** B is a relation from A to B such that: for every $a \in A$, there is *exactly one* $b \in B$ with $(a, b) \in f$

I.e., for every input $a \in A$, there is one output $b \in B$. We denote this b by f(a).

(When attempting to define a function this way, we sometimes say the function is "well defined" if the *exactly one* part holds)

A function $f : A \rightarrow B$ (A as input and B as output) is a special type of relation.

A **function** f **from** A **to** B is a relation from A to B such that: for every $a \in A$, there is *exactly one* $b \in B$ with $(a, b) \in f$

Ex: {((a, b), d) : d is the largest integer dividing a and b}

- relation from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}
- only later saw how to compute this

Relation \boldsymbol{R} on $\boldsymbol{A} = \{a_1, \dots, a_p\}$

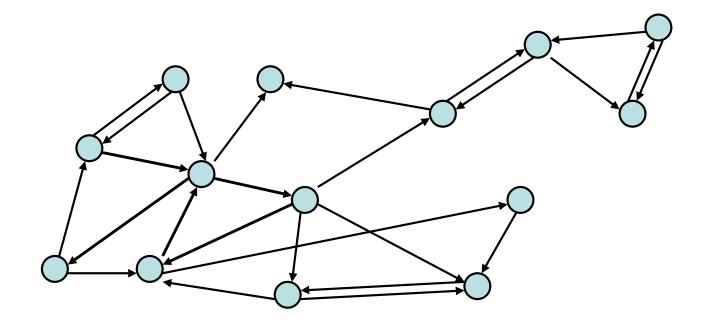
$$\boldsymbol{m}_{ij} = \begin{cases} 1 & \text{if } (a_i, a_j) \in \boldsymbol{R} \\ 0 & \text{if } (a_i, a_j) \notin \boldsymbol{R} \end{cases}$$

 $\{\,(1,\,1),\,(1,\,2),\,\,(1,\,4),\,\,(2,\,1),\,\,(2,\,3),\,(3,\,2),\,(3,\,3),\,(4,\,2),\,(4,\,3)\,\}$

	1	2	3	4
1	1	1	0	1
2	1	0	1	0
3	0	1	1	0
4	0	1	1	0

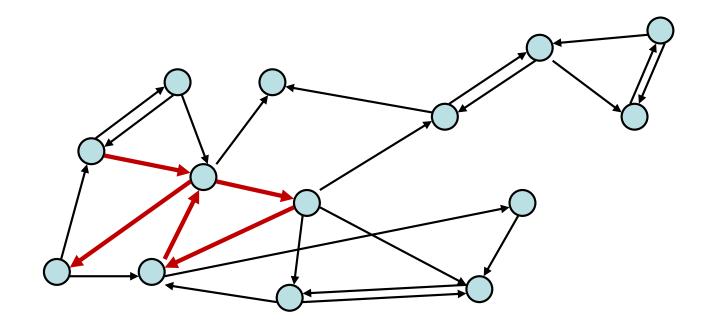
Directed Graphs

G = (V, E) V – vertices E – edges, ordered pairs of vertices



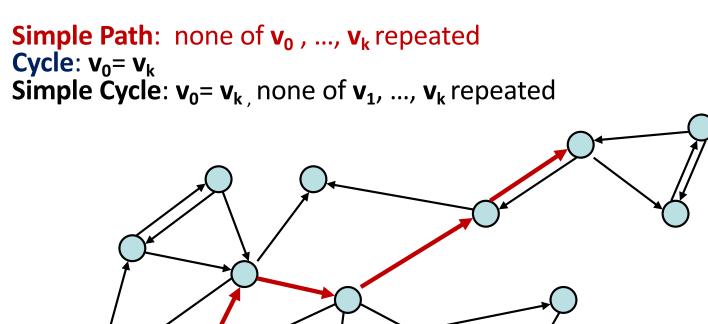
G = (V, E) V - vertices E - edges, ordered pairs of vertices

Path: v_0 , v_1 , ..., v_k with each (v_i , v_{i+1}) in E



G = (V, E) V - vertices E - edges, ordered pairs of vertices

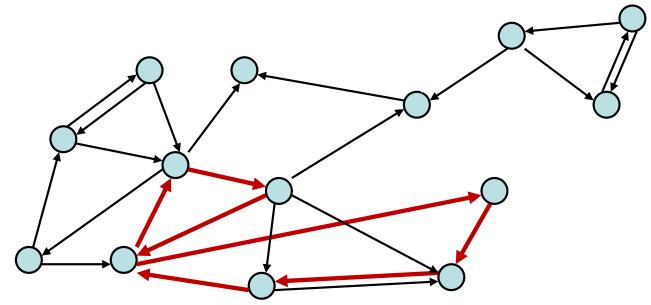
Path: v_0 , v_1 , ..., v_k with each (v_i , v_{i+1}) in E



G = (V, E) V – vertices E – edges, ordered pairs of vertices

Path: v_0 , v_1 , ..., v_k with each (v_i , v_{i+1}) in E

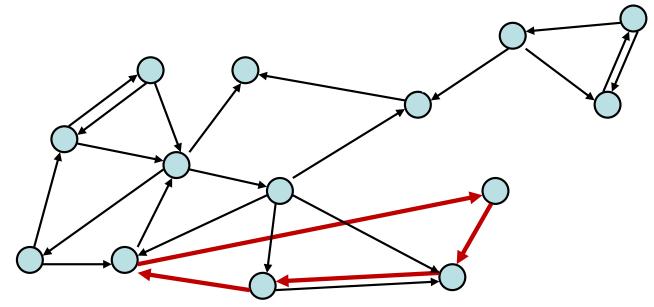
```
Simple Path: none of v_0, ..., v_k repeated
Cycle: v_0 = v_k
Simple Cycle: v_0 = v_{k_1} none of v_1, ..., v_k repeated
```



G = (V, E) V – vertices E – edges, ordered pairs of vertices

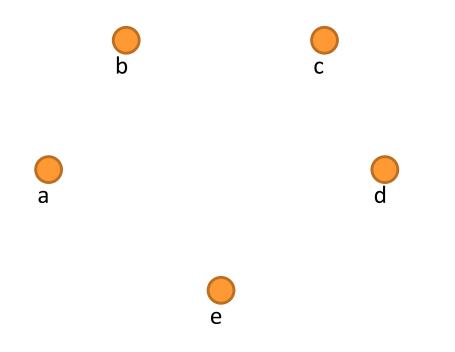
Path: v_0 , v_1 , ..., v_k with each (v_i , v_{i+1}) in E

Simple Path: none of v_0 , ..., v_k repeated Cycle: $v_0 = v_k$ Simple Cycle: $v_0 = v_{k_1}$ none of v_1 , ..., v_k repeated



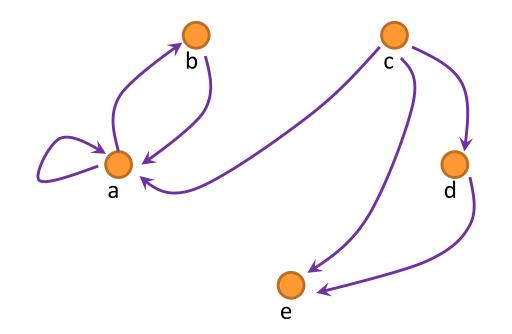
Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }



Directed Graph Representation (Digraph)

 $\{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) \}$

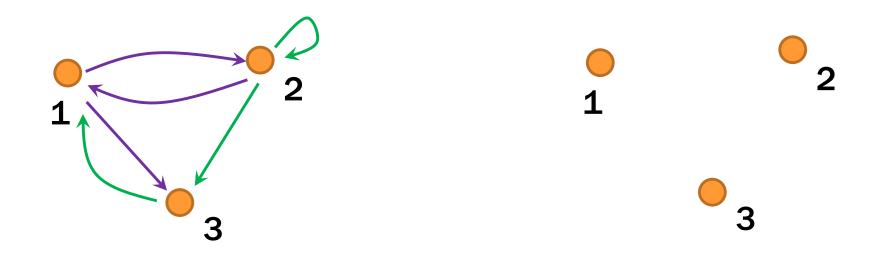


Relational Composition using Digraphs

If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ S$

Relational Composition using Digraphs

If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ S$



Relational Composition using Digraphs

If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ S$

Special case: *R* • *R* is paths of length 2.

- *R* is paths of length 1
- *R*⁰ is paths of length 0 (can't go anywhere)
- $R^3 = R^2 \circ R$ et cetera