
CSE 311: Foundations of Computing

Lecture 20:  Relations and Directed Graphs



Relations

Let A and B be sets,  
A binary relation from A to B is a subset of A ´ B

Let A be a set,
A binary relation on A is a subset of A ´ A



Relations You Already Know!

≥ on ℕ
That is: {(x,y) : x ≥ y and x, y Î ℕ}

< on ℝ
That is: {(x,y) : x < y and x, y Î ℝ}

= on ∑*
That is: {(x,y) : x = y and x, y Î ∑*}

⊆ on 𝓟(U) for universe U
That is: {(A,B) : A ⊆ B and A, B Î𝓟(U)}



More Relation Examples

R1 = {(a, 1),  (a, 2), (b, 1), (b, 3), (c, 3)}

R2 = {(x, y) | x ≡ y (mod 5) }

R3 = {(c1, c2) | c1 is a prerequisite of c2 }

R4 = {(s, c) | student s has taken course c }



Properties of Relations

Let R be a relation on A.

R is reflexive iff (a,a) Î R for every a Î A

R is symmetric iff (a,b) Î R implies (b,a) Î R

R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R

R is transitive iff (a,b)Î R and (b,c)Î R implies (a,c) Î R



Which relations have which properties?

≥ on ℕ	:		
< on ℝ	:		
= on ∑*	:	
⊆ on 𝓟(U): 
R2 = {(x, y) | x ≡ y (mod 5) } : 
R3 = {(c1, c2) | c1 is a prerequisite of c2 }: 

R is reflexive iff (a,a) Î R for every a Î A
R is symmetric iff (a,b) Î R implies (b, a)Î R
R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R
R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R



Which relations have which properties?

≥ on ℕ	:		Reflexive, Antisymmetric, Transitive
< on ℝ	:		Antisymmetric, Transitive
= on ∑*	:	Reflexive, Symmetric, Antisymmetric, Transitive

⊆ on 𝓟(U): Reflexive, Antisymmetric, Transitive
R2 = {(x, y) | x ≡ y (mod 5) } : Reflexive, Symmetric, Transitive
R3 = {(c1, c2) | c1 is a prerequisite of c2 }: Antisymmetric

R is reflexive iff (a,a) Î R for every a Î A
R is symmetric iff (a,b) Î R implies (b, a)Î R
R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R
R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R



Combining Relations

Let 𝑹 be a relation from 𝑨 to 𝑩.
Let 𝑺 be a relation from 𝑩 to 𝑪.

The composition of 𝑹 and 𝑺,  𝑹 ∘ 𝑺 is the relation 
from 𝑨 to 𝑪 defined by:

𝑹 ∘ 𝑺 = { (a, c) | $ b such that (a,b)Î 𝑹 and (b,c)Î 𝑺}

Intuitively, a pair is in the composition if there is a 
“connection” from the first to the second.



Examples

(a,b) Î Parent iff b is a parent of a
(a,b) Î Sister iff b is a sister of a

When is (x,y) Î Parent ∘ Sister?

When is (x,y) Î Sister ∘ Parent?

R ∘ S = {(a, c) | $ b such that (a,b)Î R and (b,c)Î S}



Examples

Using the relations:  Parent, Child, Brother, 
Sister, Sibling, Father, Mother, Husband, Wife 
express:

Uncle:  b is an uncle of a

Cousin:  b is a cousin of a



Powers of a Relation

𝑹𝟐 = 𝑹 ∘ 𝑹
= { 𝒂, 𝒄 ∣ ∃𝒃 such that 𝒂, 𝒃 ∈ 𝑹 and 𝒃, 𝒄 ∈ 𝑹 }

𝑹𝟎 = { 𝒂, 𝒂 ∣ 𝒂 ∈ 𝑨} “the equality relation on 𝑨”

𝑹𝟏 = 𝑹 = 𝑹𝟎 ∘ 𝑹

𝑹𝒏H𝟏 = 𝑹𝒏 ∘ 𝑹 for  𝒏 ≥ 𝟎



Non-constructive Definitions

Recursively defined sets and functions describe these 
objects by explaining how to construct / compute them

But sets can also be defined non-constructively:

How can we define functions non-constructively?
– (useful for writing a function specification)

S = {x : P(x)}



Functions

A function 𝑓 ∶ 𝐴 → 𝐵 (A as input and B as output) is a 
special type of relation.

A function f from A to B is a relation from A to B such that:
for every 𝑎 ∈ 𝐴, there is exactly one 𝑏 ∈ 𝐵 with (𝑎, 𝑏) ∈ 𝑓

I.e., for every input 𝑎 ∈ 𝐴, there is one output 𝑏 ∈ 𝐵.
We denote this 𝑏 by 𝑓(𝑎).

(When attempting to define a function this way, we sometimes say 
the function is “well defined” if the exactly one part holds)



Functions

A function 𝑓 ∶ 𝐴 → 𝐵 (A as input and B as output) is a 
special type of relation.

A function f from A to B is a relation from A to B such that:
for every 𝑎 ∈ 𝐴, there is exactly one 𝑏 ∈ 𝐵 with (𝑎, 𝑏) ∈ 𝑓

Ex:  {((a, b), d) : d is the largest integer dividing a and b}

• relation from ℕ×ℕ to ℕ
• only later saw how to compute this



Matrix Representation

Relation 𝑹 on 𝑨 = {𝑎S, … , 𝑎U}

{ (1, 1), (1, 2),  (1, 4),  (2, 1),  (2, 3), (3, 2), (3, 3), (4, 2), (4, 3) }

1 2 3 4

1 1 1 0 1

2 1 0 1 0

3 0 1 1 0

4 0 1 1 0

𝒎𝒊𝒋 =
1 if 𝑎\, 𝑎] ∈ 𝑹
0 if 𝑎\, 𝑎] ∉ 𝑹



Directed Graphs

G = (V, E) V – vertices
E – edges, ordered pairs of vertices 
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Representation of Relations

Directed Graph Representation (Digraph)

{(a, b),  (a, a),  (b, a), (c, a),  (c, d),  (c, e) (d, e) }

a d

e

b c
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Relational Composition using Digraphs

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑺
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2 1
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Special case:  𝑹 ∘ 𝑹 is paths of length 2.

• 𝑹 is paths of length 1
• 𝑹𝟎 is paths of length 0 (can’t go anywhere)
• 𝑹𝟑 = 𝑹𝟐 ∘ 𝑹 et cetera


