## CSE 311: Foundations of Computing

## Lecture 20: Relations and Directed Graphs



## Relations

Let $A$ and $B$ be sets,
$A$ binary relation from $A$ to $B$ is a subset of $A \times B$

Let A be a set,
$A$ binary relation on $A$ is a subset of $A \times A$

## Relations You Already Know!

$\geq$ on $\mathbb{N}$
That is: $\{(x, y): x \geq y$ and $x, y \in \mathbb{N}\}$
$<$ on $\mathbb{R}$
That is: $\{(\mathrm{x}, \mathrm{y}): \mathrm{x}<\mathrm{y}$ and $\mathrm{x}, \mathrm{y} \in \mathbb{R}\}$
$=$ on $\Sigma^{*}$
That is: $\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x}=\mathrm{y}\right.$ and $\left.\mathrm{x}, \mathrm{y} \in \sum^{*}\right\}$
$\subseteq$ on $\mathcal{P}(\mathrm{U})$ for universe U
That is: $\{(\mathrm{A}, \mathrm{B}): \mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{A}, \mathrm{B} \in \mathcal{P}(\mathrm{U})\}$

## More Relation Examples

$$
\begin{aligned}
& \mathbf{R}_{1}=\{(a, 1),(a, 2),(b, 1),(b, 3),(c, 3)\} \\
& \mathbf{R}_{2}=\{(x, y) \mid x \equiv y(\bmod 5)\}
\end{aligned}
$$

$$
\mathbf{R}_{3}=\left\{\left(c_{1}, c_{2}\right) \mid c_{1} \text { is a prerequisite of } c_{2}\right\}
$$

$$
\mathbf{R}_{4}=\{(\mathrm{s}, \mathrm{c}) \mid \text { student } s \text { has taken course } \mathrm{c}\}
$$

## Properties of Relations

Let $R$ be a relation on $A$.
$R$ is reflexive iff $(a, a) \in R$ for every $a \in A$
$R$ is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
$R$ is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
$R$ is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

## Which relations have which properties?

$\geq$ on $\mathbb{N}$ :
<on $\mathbb{R}$ :
$=$ on $\sum^{*}$ :
$\subseteq$ on $\mathcal{P}(\mathrm{U}):$
$\mathbf{R}_{\mathbf{2}}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x} \equiv \mathrm{y}(\bmod 5)\}:$
$\mathbf{R}_{3}=\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \mid \mathrm{c}_{1}\right.$ is a prerequisite of $\left.\mathrm{c}_{2}\right\}$ :
$R$ is reflexive iff $(a, a) \in R$ for every $a \in A$
$R$ is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
$R$ is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$ $R$ is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

## Which relations have which properties?

$\geq$ on $\mathbb{N}$ : Reflexive, Antisymmetric, Transitive
< on $\mathbb{R}$ : Antisymmetric, Transitive
$=$ on $\Sigma^{*}$ : Reflexive, Symmetric, Antisymmetric, Transitive
$\subseteq$ on $\mathcal{P}(\mathrm{U}):$ Reflexive, Antisymmetric, Transitive
$\mathbf{R}_{2}=\{(x, y) \mid x \equiv y(\bmod 5)\}$ : Reflexive, Symmetric, Transitive
$\mathbf{R}_{3}=\left\{\left(c_{1}, c_{2}\right) \mid c_{1}\right.$ is a prerequisite of $\left.c_{2}\right\}$ : Antisymmetric
$R$ is reflexive iff $(a, a) \in R$ for every $a \in A$
$R$ is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
$R$ is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$ $R$ is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

## Combining Relations

Let $R$ be a relation from $A$ to $B$.
Let $S$ be a relation from $B$ to $C$.

The composition of $R$ and $S, R \circ S$ is the relation from $A$ to $C$ defined by:

$$
R \circ S=\{(\mathrm{a}, \mathrm{c}) \mid \exists \mathrm{b} \text { such that }(\mathrm{a}, \mathrm{~b}) \in R \text { and }(\mathrm{b}, \mathrm{c}) \in S\}
$$

Intuitively, a pair is in the composition if there is a "connection" from the first to the second.

## Examples

$(a, b) \in$ Parent iff $b$ is a parent of $a$
$(a, b) \in$ Sister iff $b$ is a sister of a

When is $(x, y) \in$ Parent $\circ$ Sister?

When is $(\mathrm{x}, \mathrm{y}) \in$ Sister $\circ$ Parent?

$$
R \circ S=\{(a, c) \mid \exists b \text { such that }(a, b) \in R \text { and }(b, c) \in S\}
$$

## Examples

Using the relations: Parent, Child, Brother, Sister, Sibling, Father, Mother, Husband, Wife express:

Uncle: $b$ is an uncle of $a$

Cousin: $b$ is a cousin of $a$

## Powers of a Relation

$$
\begin{aligned}
\boldsymbol{R}^{2} & =\boldsymbol{R} \circ \boldsymbol{R} \\
& =\{(\boldsymbol{a}, \boldsymbol{c}) \mid \exists b \text { such that }(a, b) \in \boldsymbol{R} \text { and }(b, c) \in \boldsymbol{R}\} \\
\boldsymbol{R}^{0} & =\{(a, a) \mid a \in A\} \quad \text { "the equality relation on } \boldsymbol{A}^{\prime \prime} \\
\boldsymbol{R}^{1} & =\boldsymbol{R}=\boldsymbol{R}^{0} \circ \boldsymbol{R} \\
\boldsymbol{R}^{n+1} & =\boldsymbol{R}^{n} \circ \boldsymbol{R} \text { for } n \geq \mathbf{0}
\end{aligned}
$$

## Non-constructive Definitions

Recursively defined sets and functions describe these objects by explaining how to construct / compute them

But sets can also be defined non-constructively:

$$
S=\{x: P(x)\}
$$

How can we define functions non-constructively?

- (useful for writing a function specification)


## Functions

A function $f: A \rightarrow B$ ( A as input and B as output) is a special type of relation.

A function $f$ from $A$ to $B$ is a relation from $A$ to $B$ such that: for every $a \in A$, there is exactly one $b \in B$ with $(a, b) \in f$
I.e., for every input $a \in A$, there is one output $b \in B$.

We denote this $b$ by $f(a)$.
(When attempting to define a function this way, we sometimes say the function is "well defined" if the exactly one part holds)

## Functions

A function $f: A \rightarrow B$ ( A as input and B as output) is a special type of relation.

A function $f$ from $A$ to $B$ is a relation from $A$ to $B$ such that: for every $a \in A$, there is exactly one $b \in B$ with $(a, b) \in f$

Ex: $\{((a, b), d): d$ is the largest integer dividing $a$ and $b\}$

- relation from $\mathbb{N} \times \mathbb{N}$ to $\mathbb{N}$
- only later saw how to compute this


## Matrix Representation

Relation $\boldsymbol{R}$ on $\boldsymbol{A}=\left\{a_{1}, \ldots, a_{p}\right\}$

$$
\begin{aligned}
& \boldsymbol{m}_{\boldsymbol{i j}}= \begin{cases}1 & \text { if }\left(a_{i}, a_{j}\right) \in \boldsymbol{R} \\
0 & \text { if }\left(a_{i}, a_{j}\right) \notin \boldsymbol{R}\end{cases} \\
& \{(1,1),(1,2),(1,4),(2,1),(2,3),(3,2),(3,3),(4,2),(4,3)\}
\end{aligned}
$$

## Directed Graphs

$$
\begin{array}{ll}
G=(V, E) & V-\text { vertices } \\
E-\text { edges, ordered pairs of vertices }
\end{array}
$$



## Directed Graphs

$$
\begin{array}{ll}
G=(V, E) & V-\text { vertices } \\
& E-\text { edges, ordered pairs of vertices }
\end{array}
$$

Path: $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ with each $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E


## Directed Graphs

$$
\begin{array}{ll}
G=(V, E) & V-\text { vertices } \\
E-\text { edges, ordered pairs of vertices }
\end{array}
$$

Path: $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ with each $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{\mathbf{0}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated Cycle: $\mathbf{v}_{\mathbf{0}}=\mathrm{v}_{\mathrm{k}}$ Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated


## Directed Graphs

$$
\begin{array}{ll}
G=(V, E) & V-\text { vertices } \\
E-\text { edges, ordered pairs of vertices }
\end{array}
$$

Path: $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ with each $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{\mathbf{0}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated Cycle: $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$
Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated


## Directed Graphs

$$
\begin{array}{ll}
G=(V, E) \quad & V-\text { vertices } \\
E-\text { edges, ordered pairs of vertices }
\end{array}
$$

Path: $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ with each $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{\mathbf{0}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated Cycle: $\mathbf{v}_{\mathbf{0}}=\mathrm{v}_{\mathrm{k}}$
Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated


## Representation of Relations

## Directed Graph Representation (Digraph)

$\{(a, b),(a, a),(b, a),(c, a),(c, d),(c, e)(d, e)\}$


## Representation of Relations

## Directed Graph Representation (Digraph)

$\{(a, b),(a, a),(b, a),(c, a),(c, d),(c, e)(d, e)\}$


## Relational Composition using Digraphs

If $S=\{(2,2),(2,3),(3,1)\}$ and $R=\{(1,2),(2,1),(1,3)\}$
Compute $\boldsymbol{R} \circ S$


## Relational Composition using Digraphs

If $S=\{(2,2),(2,3),(3,1)\}$ and $R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\}$
Compute $\boldsymbol{R} \circ \boldsymbol{S}$


## Relational Composition using Digraphs

If $S=\{(2,2),(2,3),(3,1)\}$ and $R=\{(1,2),(2,1),(1,3)\}$
Compute $\boldsymbol{R} \circ \boldsymbol{S}$


Special case: $R \circ R$ is paths of length 2.

- $R$ is paths of length 1
- $R^{0}$ is paths of length 0 (can't go anywhere)
- $R^{3}=R^{2} \circ R$ et cetera

