CSE 311: Foundations of Computing

Lecture 19: Regular Expressions \& Context-Free Grammars

Administrivia

- HW7 out tomorrow
- longer than usual

Problem 1 may be the hardest proof so far (we'll see)

- Part due next Friday

Rest due Monday after

- won't get through all the material until Wed
- start early!

Review: Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
- A finite set \mathbf{V} of variables that can be replaced
- Alphabet Σ of terminal symbols that can't be replaced
- One variable, usually \mathbf{S}, is called the start symbol
- The substitution rules involving a variable \mathbf{A}, written as

$$
A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}
$$

where each w_{i} is a string of variables and terminals

- that is $w_{i} \in(\mathbf{V} \cup \Sigma)^{*}$

Review: How CFGs generate strings

- Begin with start symbol S
- If there is some variable \mathbf{A} in the current string you can replace it by one of the w's in the rules for \mathbf{A}
$-A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}$
- Write this as $x A y \Rightarrow x w y$
- Repeat until no variables left
- The set of strings the CFG generates are all strings produced in this way (after a finite number of steps) that have no variables

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow \mathbf{0 S O} \mid$ 1S1| $0|1| \varepsilon$

The set of all binary palindromes.
E.g., to see that 001101100 is in the language:
$\mathrm{S} \Rightarrow \mathrm{OSO}$
\Rightarrow 00S00
\Rightarrow 001S100
\Rightarrow 0011S1100
$\Rightarrow 00110100$

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(all strings with same \# of 0's and 1's with all 0's before 1's)

$$
\mathbf{S} \rightarrow \text { OS1 } \| \varepsilon
$$

HW7 Problem 1:
binary strings with an equal number of 0 s and 1 s

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate ($2 * x$) + y

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate (2*x) + y

$$
\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow(\mathrm{E})+\mathrm{E} \Rightarrow(\mathrm{E} * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{y}
$$

Six different ways to do
$(\mathrm{E} * \mathrm{E})+\mathrm{E} \Rightarrow$... $\Rightarrow(2 * \mathrm{x})+\mathrm{y}$

Parse Trees

Suppose that grammar G generates a string x

- A parse tree of x for G has
- Root labeled S (start symbol of G)
- The children of any node labeled A are labeled by symbols of w left-to-right for some rule $A \rightarrow w$
- The symbols of x label the leaves ordered left-to-right

$$
\mathbf{S} \rightarrow \text { OS0 } \mid \text { 1S1 | } 0|1| \varepsilon
$$

Parse tree of 01110

Simple Arithmetic Expressions

$$
\begin{aligned}
& E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
& \quad|5| 6|7| 8 \mid 9
\end{aligned}
$$

Generate $\mathrm{x}+\mathrm{y} * \mathrm{z}$ in two ways that give two different parse trees

Simple Arithmetic Expres

Different parse trees give different meanings (here, order of operations)

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $x+y * z$ in ways that give two different parse trees

$\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow \mathrm{x}+\mathrm{E} \Rightarrow \mathrm{x}+\mathrm{E} * \mathrm{E} \Rightarrow \mathrm{x}+\mathrm{y} * \mathrm{E} \Rightarrow \mathrm{x}+\mathrm{y} * \mathrm{z}$
(multiply y with z and then add to x)

$$
\begin{aligned}
\mathrm{E} & \Rightarrow \mathrm{E} * \mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} * \mathrm{E} \Rightarrow \mathrm{x}+\mathrm{E} * \mathrm{E} \\
& \Rightarrow \mathrm{x}+\mathrm{y} * \mathrm{E} \Rightarrow \mathrm{x}+\mathrm{y} * \mathrm{z}
\end{aligned}
$$

(add x to y, then multiply by z)

Building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{X}|\mathrm{Y}| \mathrm{z} \\
& \mathbf{N}
\end{aligned}
$$

No longer allows:

Building precedence in simple arithmetic expressions

- E-expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{X}|\mathrm{Y}| \mathrm{z} \\
& \mathbf{N}
\end{aligned}
$$

Building precedence in simple arithmetic expressions

- E-expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{x}|\mathrm{Y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

Still
allows:

Building precedence in simple arithmetic expressions

- E-expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{x}|\mathrm{Y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

CFGs and recursively-defined sets of strings

- A CFG with the start symbol \mathbf{S} as its only variable recursively defines the set of strings of terminals that \mathbf{S} can generate
- i.e., CFGs translate into recursively defined sets of strings
- set of parse trees is also a recursively defined set
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by each of its variables
- sometimes necessary to use more than one

CFGs and regular expressions
Theorem: For any set of strings (language) A described by a regular expression, there is a CFG that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...

Regular Expressions over Σ

- Basis:
$-\varepsilon$ is a regular expression
$-\boldsymbol{a}$ is a regular expression for any $\boldsymbol{a} \in \Sigma$
- Recursive step:
- If A and B are regular expressions then so are:
$(A \cup B)$
(AB)
A*

CFGs are more general than REs

- CFG to match RE ε

$$
\mathbf{S} \rightarrow \varepsilon
$$

- CFG to match RE a (for any $a \in \Sigma$)
$\mathbf{S} \rightarrow \mathrm{a}$

CFGs are more general than REs

Suppose CFG with start symbol \mathbf{S}_{1} matches RE A CFG with start symbol $\mathbf{S}_{\mathbf{2}}$ matches RE B

- CFG to match RE $\mathbf{A} \cup B$

$$
\mathrm{S} \rightarrow \mathrm{~S}_{1} \mid \mathrm{S}_{2}
$$

- CFG to match RE AB

$$
\mathbf{S} \rightarrow \mathbf{S}_{1} \mathbf{S}_{2}
$$

CFGs are more general than REs

Suppose CFG with start symbol \mathbf{S}_{1} matches RE A

- CFG to match RE $A^{*} \quad(=\varepsilon \cup \mathbf{A} \cup \mathbf{A A} \cup \mathbf{A A A} \cup \ldots)$

$$
\mathbf{S} \rightarrow \mathbf{S}_{1} \mathbf{S} \mid \varepsilon
$$

Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

- Originally used to define programming languages
- Variables denoted by long names in angle brackets, e.g.
<identifier>, <if-then-else-statement>, <assignment-statement>, <condition>
::= used instead of \rightarrow

BNF for C

```
statement:
    ((identifier | "case" constant-expression | "default") ":")*
    (expression? ";" |
    block |
        "if" "(" expression ")" statement |
        "if" "(" expression ")" statement "else" statement |
        "switch" "(" expression ")" statement
        "while" "(" expression ")" statement |
        "do" statement "while" "(" expression ")" ";" |
        "for" "(" expression? ";" expression? ";" expression? ")" statement |
        "goto" identifier ";" |
        "continue" ";" |
        "break" ";" |
        "return" expression? ";"
    )
block: "{" declaration* statement* "}"
expression:
    assignment-expression%
assignment-expression:
            unary-expression (
                "=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "&=" |
            "^=" | "|="
        )
    )* conditional-expression
conditional-expression:
    logical-OR-expression ( "?" expression ":" conditional-expression )?
```


Parse Trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>

Parse:

The yellow duck squeaked loudly
The red truck hit a parked car

Relations and Directed Graphs

And now
 for something completely different...

Relations

Let A and B be sets,
A binary relation from A to B is a subset of $A \times B$

Let A be a set,
A binary relation on A is a subset of $A \times A$

Relations You Already Know!

\geq on \mathbb{N}
That is: $\{(x, y): x \geq y$ and $x, y \in \mathbb{N}\}$
$<$ on \mathbb{R}
That is: $\{(\mathrm{x}, \mathrm{y}): \mathrm{x}<\mathrm{y}$ and $\mathrm{x}, \mathrm{y} \in \mathbb{R}\}$
$=$ on Σ^{*}
That is: $\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x}=\mathrm{y}\right.$ and $\left.\mathrm{x}, \mathrm{y} \in \sum^{*}\right\}$
\subseteq on $\mathcal{P}(\mathrm{U})$ for universe U
That is: $\{(\mathrm{A}, \mathrm{B}): \mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{A}, \mathrm{B} \in \mathcal{P}(\mathrm{U})\}$

More Relation Examples

$$
\begin{aligned}
& \mathbf{R}_{1}=\{(a, 1),(a, 2),(b, 1),(b, 3),(c, 3)\} \\
& \mathbf{R}_{2}=\{(x, y) \mid x \equiv y(\bmod 5)\}
\end{aligned}
$$

$$
\mathbf{R}_{3}=\left\{\left(c_{1}, c_{2}\right) \mid c_{1} \text { is a prerequisite of } c_{2}\right\}
$$

$$
\mathbf{R}_{4}=\{(\mathrm{s}, \mathrm{c}) \mid \text { student } s \text { has taken course } \mathrm{c}\}
$$

Properties of Relations

Let R be a relation on A.
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Which relations have which properties?

\geq on \mathbb{N} :
<on \mathbb{R} :
$=$ on \sum^{*} :
\subseteq on $\mathcal{P}(\mathrm{U}):$
$\mathbf{R}_{\mathbf{2}}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x} \equiv \mathrm{y}(\bmod 5)\}:$
$\mathbf{R}_{3}=\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \mid \mathrm{c}_{1}\right.$ is a prerequisite of $\left.\mathrm{c}_{2}\right\}$:
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$ R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Which relations have which properties?

\geq on \mathbb{N} : Reflexive, Antisymmetric, Transitive
< on \mathbb{R} : Antisymmetric, Transitive
$=$ on Σ^{*} : Reflexive, Symmetric, Antisymmetric, Transitive
\subseteq on $\mathcal{P}(\mathrm{U}):$ Reflexive, Antisymmetric, Transitive
$\mathbf{R}_{2}=\{(x, y) \mid x \equiv y(\bmod 5)\}$: Reflexive, Symmetric, Transitive
$\mathbf{R}_{3}=\left\{\left(c_{1}, c_{2}\right) \mid c_{1}\right.$ is a prerequisite of $\left.c_{2}\right\}$: Antisymmetric
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$ R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

