CSE 311: Foundations of Computing

Lecture 19: Regular Expressions &

Context-Free Grammars

N

I

MAL LANGUAGES

I0™ ANNUAL
OSIUM ON

4
ALY

(eon\

I'E<
7

GRAMMAR!

[Audience looks around]

“What is going on? There must be some context we’re missing”

Administrivia

e HW7 out tomorrow

— longer than usual
Problem 1 may be the hardest proof so far (we’ll see)

* Part due next Friday
Rest due Monday after

—won'’t get through all the material until Wed
— start early!

Review: Context-Free Grammars

* A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

— A finite set V of variables that can be replaced
— Alphabet X2 of terminal symbols that can’t be replaced
— One variable, usually S, is called the start symbol

* The substitution rules involving a variable A, written as
A—>wy| wy |- |w

where each w; is a string of variables and terminals
—thatisw, € (VU X)"

Review: How CFGs generate strings

* Begin with start symbol S

* If there is some variable A in the current string you
can replace it by one of the w’s in the rules for A

A w | Wy | | w
— Write this as xAy = xwy
— Repeat until no variables left

* The set of strings the CFG generates are all strings
produced in this way (after a finite number of steps)
that have no variables

Example Context-Free Grammars

Example: S—>0S0|1S1|0]|1]c¢

The set of all binary palindromes.

E.g., to see that 001101100 is in the language:

S = 0S0
= 00S00
= 001S100
= 001151100
= 00110100

Example Context-Free Grammars

Grammar for {0"1":n > 0}
(all strings with same # of O’s and 1’s with all O’s before 1's)

S 5081 | ¢

HW7 Problem 1.:
binary strings with an equal number of Os and 1s

Simple Arithmetic Expressions

E> E+E|E<E| (E) | x|y|z]|0|1]2]|3]4
15167819

Generate (2*xx) +vy

Simple Arithmetic Expressions

E> E+E|E<E| (E) | x|y|z]|0|1]2]|3]4
15167819

Generate (2*xx) +vy

E= E+E = (E)+E = (E*E)+E = (2*%E)+E = (2*X)+E = (2*X)+y

4)
Six different ways to do

(ExE)+E = ... = (2xx)+y

p
Parse Trees

.

Parse tree shows the substitutions
but not the exact order in which
they were performed

Suppose that grammar G generates a string x

* A parse tree of x for G has

— Root labeled S (start symbol of G)

— The children of any node labeled

A are labeled by

symbols of w left-to-right for some rule A —>w

— The symbols of x label the leaves ordered left-to-right

S—>0S0|1Ss1|0|1]¢

Parse tree of 01110

/I\
0 SO

1 S 1

1

Simple Arithmetic Expressions

E> E+E|E<E| (E) | x|y|z]|0|1]2]|3]4
15167819

Generate x+yx*z in two ways that give two different
parse trees

~
SI m ple Al‘lth metic Exp res(Different parse trees give different

k meanings (here, order of operations)

J

E> E+E|E<E| (E) | x|y|z]|0|1]2]|3]4
15167819

Generate x+y+*z in ways that give two different parse trees

E E = E+E = Xx+E = x+E*E = x+y*E = x+y*z
E/ | \E (multiply y with z and then add to x)
+

RN E
X E % FE /|\ E > E*E > E+E*E = x+E*E
| | E % E = xt+y*E > x+y*z
Y z /I X\ | (addxtoy,then multiply by z)
E + E 4
| |
X Y

Building precedence in simple arithmetic expressions

e E - expression (start symbol)

e T—term F—factor |—identifier N - number
E > T|E+T
T > F | F«T
No longer
F _)(E)lllN allows:
| > x]|y]|z E
N >0|1]|2|3|4|5|6]7]|8]9 A RN
E x E
1IN
E + E 4
| |
X Y

Building precedence in simple arithmetic expressions

e E - expression (start symbol)

* T—term F-—factor |-identifier N - number

E > T|E+T

T > F| F«T

F > (E)|I|N E

| > x|y]|z T

N >0|1]2]|3|4|5|6|7]|8]°9 A RN
F o« T

AN

+

Building precedence in simple arithmetic expressions

e E - expression (start symbol)

e T—term F—factor |—identifier N - number
E > T|E+T
T > F | F«T
Still

F _)(E)lllN allows:

| > x]|y]|z E

N >0|1]2]3|4]|5|6]7]18]9 .|\
F + E
| /1
X E * E

|
Yy 2

Building precedence in simple arithmetic expressions

e E - expression (start symbol)
* T—term F-—factor |-identifier N - number
E > T|E+T
T > F| F«T
F > (E)|I|N
| > x|y]|z

E

N >0|1]2]3|4]|5|6]7]18]9 .|\
|_5+T
/I
X F * T

V2

CFGs and recursively-defined sets of strings

A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals
that S can generate

— i.e., CFGs translate into recursively defined sets of strings
— set of parse trees is also a recursively defined set

e A CFG with more than one variable is a
simultaneous recursive definition of the sets of
strings generated by each of its variables

— sometimes necessary to use more than one

CFGs and regular expressions

Theorem: For any set of strings (language) A
described by a regular expression, there is a
CFG that recognizes A.

Proof idea: Structural induction based on the
recursive definition of regular expressions...

Regular Expressions over 2

* Basis:
— £ IS a regular expression
— a is a regular expression for any a € X

* Recursive step:
— If A and B are regular expressions then so are:
(A U B)
(AB)
A*

CFGs are more general than REs

* CFG to match RE ¢

S—>¢

 CFG to match RE a (forany a €)

S—a

CFGs are more general than REs

Suppose CFG with start symbol S; matches RE A
CFG with start symbol S, matches RE B

e CFGtomatchREAU B
S—>S,]S,

e CFG to match RE AB

S—S,S,

CFGs are more general than REs

Suppose CFG with start symbol S; matches RE A

e CFGtomatchREA®™ (e UAUAAUAAAU ...)

S—>S,S|¢

Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

— Originally used to define programming
languages
— Variables denoted by long nhames in angle

brackets, e.g.

<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>

::= used instead of —»

BNF for C

statement:

((identifier | "case" constant-expression | "default™) ":")*
(expression? ";" |

block |

"if" " (" expression ")" statement |

"if" " (" expression ")" statement "else" statement |
"switch™ " (" expression ")" statement |

"while"™ " (" expression ")" statement |

"do" statement "while™ " (" expression ")" ";" |

"for™ " (" expression? ";" expression? ";" expression? ")" statement
"goto"™ identifier ";" |

"continue™ ";" |

"break" ";" |

"return" expression? ";"

block: "{" declaration* statement* "}"

expression:
assignment-expression$

assignment-expression: (
unary-expression (

'l='I I n *='l | n /='l | n %='l | 'l+='l l 'l_='l
n f\='| | n |='l
)
)* conditional-expression
conditional-expression:
logical-OR-expression ("?" expression ":"

l 'l<<=" | II>>=II |

” &="

conditional-expression)?

Parse Trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<nhoun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb> | <verb><object>
<object>::=<noun phrase>

Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

Relations and Directed Graphs

And now
for something
completely different...

Relations

Let A and B be sets,
A binary relation from A to B is a subset of A x B

Let A be a set,
A binary relation on A is a subset of A x A

Relations You Already Know!

=>on N
Thatis: {(x,y) : x =yand x,y € N}

<onk
Thatis: {(x,y) : x<yand x, y € R}

= oh }*

Thatis: {(x,y) : x=vyand x,y € Y*}

C on P(U) for universe U
Thatis: {(A,B) : AS Band A, B € P(U)}

More Relation Examples

Rl = {(a, 1)1 (a, 2)1 (b, 1)1 (b, 3)1 (Cr 3)}

R, ={(x,y) | x=y(mod5) }

R; ={(c,, ¢,) | ¢, is a prerequisite of ¢, }

R, = {(s, c) | student s has taken course c }

Properties of Relations

Let R be a relation on A.

R is reflexive iff (a,a) € R for everya € A

R is symmetric iff (a,b) € R implies (b,a) € R

R is antisymmetric iff (a,b) € Rand a # b implies (b,a) € R

R is transitive iff (a,b)e R and (b,c)e R implies (a,c) € R

Which relations have which properties?

=>on N :

<onR:

=onY*:

C on P(U):

Ry ={(x,y) [x=y(mod5)}:

R; ={(cy, ¢,) | ¢, is a prerequisite of ¢, }:

R is reflexive iff (a,a) € R for everya € A

R is symmetric iff (a,b) € Rimplies (b, a)e R

R is antisymmetric iff (a,b) € R and a # b implies (b,a) € R
R is transitive iff (a,b)e R and (b, c)e R implies (a, c) € R

Which relations have which properties?

= onh N : Reflexive, Antisymmetric, Transitive

< on R : Antisymmetric, Transitive

= on }* : Reflexive, Symmetric, Antisymmetric, Transitive
C on P(U): Reflexive, Antisymmetric, Transitive

R, ={(x,y) | x=y(mod5) }: Reflexive, Symmetric, Transitive
R; ={(cy, ¢,) | ¢, is a prerequisite of ¢, }: Antisymmetric

R is reflexive iff (a,a) € R for everya € A

R is symmetric iff (a,b) € Rimplies (b, a)e R

R is antisymmetric iff (a,b) € R and a # b implies (b,a) € R
R is transitive iff (a,b)e R and (b, c)e R implies (a, c) € R

