
CSE 311: Foundations of Computing

Lecture 19: Regular Expressions &
Context-Free Grammars

[Audience looks around]
“What is going on? There must be some context we’re missing”

Administrivia

• HW7 out tomorrow
– longer than usual

Problem 1 may be the hardest proof so far (we’ll see)

• Part due next Friday
Rest due Monday after
– won’t get through all the material until Wed
– start early!

Review: Context-Free Grammars

• A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving
– A finite set V of variables that can be replaced
– Alphabet S of terminal symbols that can’t be replaced
– One variable, usually S, is called the start symbol

• The substitution rules involving a variable A, written as
A ® w1 | w2 | ⋯ | wk

where each wi is a string of variables and terminals
– that is wi ∈ (V È S)*

Review: How CFGs generate strings

• Begin with start symbol S

• If there is some variable A in the current string you
can replace it by one of the w’s in the rules for A
– A ® w1 | w2 | ⋯ | wk

– Write this as xAy ⇒ xwy
– Repeat until no variables left

• The set of strings the CFG generates are all strings
produced in this way (after a finite number of steps)
that have no variables

Example Context-Free Grammars

Example: S ® 0S0 | 1S1 | 0 | 1 | e

The set of all binary palindromes.

E.g., to see that 001101100 is in the language:

S ⇒ 0S0
⇒ 00S00
⇒ 001S100
⇒ 0011S1100
⇒ 00110100

Example Context-Free Grammars

Grammar for 0'1': 𝑛 ≥ 0
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

S ® 0S1 | e

HW7 Problem 1:
binary strings with an equal number of 0s and 1s

Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4
| 5 | 6 | 7 | 8 | 9

Generate (2∗x) + y

Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4
| 5 | 6 | 7 | 8 | 9

Generate (2∗x) + y

E ⇒ E+E⇒	(E)+E⇒ (E∗E)+E⇒ (2∗E)+E⇒ (2∗x)+E⇒ (2∗x)+y

Six different ways to do

(E∗E)+E ⇒ ... ⇒ (2∗x)+y

Parse Trees

Suppose that grammar G generates a string x
• A parse tree of x for G has
– Root labeled S (start symbol of G)
– The children of any node labeled A are labeled by

symbols of w left-to-right for some rule A ® w
– The symbols of x label the leaves ordered left-to-right

S ® 0S0 | 1S1 | 0 | 1 | e

S

0 0S

S1 1

1
Parse tree of 01110

Parse tree shows the substitutions
but not the exact order in which

they were performed

Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4
| 5 | 6 | 7 | 8 | 9

Generate x+y∗z in two ways that give two different
parse trees

Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4
| 5 | 6 | 7 | 8 | 9

Generate x+y∗z in ways that give two different parse trees

E ⇒ E+E⇒ x+E⇒	x+E∗E⇒ x+y∗E⇒ x+y∗z
(multiply	y	with	z	and	then	add	to	x)

E ⇒ E∗E⇒	E+E∗E⇒ x+E∗E

⇒ x+y∗E⇒ x+y∗z
(add	x	to	y,	then	multiply	by	z)

E

E

+
x

E*

z

y

E E

E

E +

x

E

*
zy

E E

Different parse trees give different
meanings (here, order of operations)

Building precedence in simple arithmetic expressions

• E – expression (start symbol)
• T – term F – factor I – identifier N - number

E ® T | E+T
T ® F | F∗T
F ® (E) | I | N
I ® x | y | z
N ® 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

E

+
x

E*

z

y

E E

No longer
allows:

Building precedence in simple arithmetic expressions

• E – expression (start symbol)
• T – term F – factor I – identifier N - number

E ® T | E+T
T ® F | F∗T
F ® (E) | I | N
I ® x | y | z
N ® 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

F

+
x

T*

zy

T

?

Building precedence in simple arithmetic expressions

• E – expression (start symbol)
• T – term F – factor I – identifier N - number

E ® T | E+T
T ® F | F∗T
F ® (E) | I | N
I ® x | y | z
N ® 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

E

+

x

E

*
zy

E

E

Still
allows:

Building precedence in simple arithmetic expressions

• E – expression (start symbol)
• T – term F – factor I – identifier N - number

E ® T | E+T
T ® F | F∗T
F ® (E) | I | N
I ® x | y | z
N ® 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

T

+

x

T

*
zy

E

F

CFGs and recursively-defined sets of strings

• A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals
that S can generate
– i.e., CFGs translate into recursively defined sets of strings
– set of parse trees is also a recursively defined set

• A CFG with more than one variable is a
simultaneous recursive definition of the sets of
strings generated by each of its variables
– sometimes necessary to use more than one

Theorem: For any set of strings (language) 𝐴
described by a regular expression, there is a
CFG that recognizes 𝐴.

Proof idea: Structural induction based on the
recursive definition of regular expressions...

CFGs and regular expressions

Regular Expressions over S

• Basis:
– ɛ is a regular expression
– a is a regular expression for any a Î S

• Recursive step:
– If A and B are regular expressions then so are:

(A È B)
(AB)

A*

CFGs are more general than REs

• CFG to match RE e

S ® e

• CFG to match RE a (for any 𝑎 Î S)

S ® a

CFGs are more general than REs

Suppose CFG with start symbol S1 matches RE A
CFG with start symbol S2 matches RE B

• CFG to match RE A È B

S ® S1 | S2

• CFG to match RE AB

S ® S1 S2

CFGs are more general than REs

Suppose CFG with start symbol S1 matches RE A

• CFG to match RE A* (= e È A È AA È AAA È ...)

S ® S1 S | e

Backus-Naur Form (The same thing…)

BNF (Backus-Naur Form) grammars
– Originally used to define programming

languages
– Variables denoted by long names in angle

brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
∷= used instead of ®

BNF for C

Parse Trees

Back to middle school:
<sentence>∷=<noun phrase><verb phrase>
<noun phrase>∷==<article><adjective><noun>
<verb phrase>∷=<verb><adverb>|<verb><object>
<object>∷=<noun phrase>

Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

Relations and Directed Graphs

Relations

Let A and B be sets,
A binary relation from A to B is a subset of A ´ B

Let A be a set,
A binary relation on A is a subset of A ´ A

Relations You Already Know!

≥ on ℕ
That is: {(x,y) : x ≥ y and x, y Î ℕ}

< on ℝ
That is: {(x,y) : x < y and x, y Î ℝ}

= on ∑*
That is: {(x,y) : x = y and x, y Î ∑*}

⊆ on 𝓟(U) for universe U
That is: {(A,B) : A ⊆ B and A, B Î𝓟(U)}

More Relation Examples

R1 = {(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)}

R2 = {(x, y) | x ≡ y (mod 5) }

R3 = {(c1, c2) | c1 is a prerequisite of c2 }

R4 = {(s, c) | student s has taken course c }

Properties of Relations

Let R be a relation on A.

R is reflexive iff (a,a) Î R for every a Î A

R is symmetric iff (a,b) Î R implies (b,a) Î R

R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R

R is transitive iff (a,b)Î R and (b,c)Î R implies (a,c) Î R

Which relations have which properties?

≥ on ℕ	:		
< on ℝ	:		
= on ∑*	:	
⊆ on 𝓟(U):
R2 = {(x, y) | x ≡ y (mod 5) } :
R3 = {(c1, c2) | c1 is a prerequisite of c2 }:

R is reflexive iff (a,a) Î R for every a Î A
R is symmetric iff (a,b) Î R implies (b, a)Î R
R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R
R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

Which relations have which properties?

≥ on ℕ	:		Reflexive, Antisymmetric, Transitive
< on ℝ	:		Antisymmetric, Transitive
= on ∑*	:	Reflexive, Symmetric, Antisymmetric, Transitive

⊆ on 𝓟(U): Reflexive, Antisymmetric, Transitive
R2 = {(x, y) | x ≡ y (mod 5) } : Reflexive, Symmetric, Transitive
R3 = {(c1, c2) | c1 is a prerequisite of c2 }: Antisymmetric

R is reflexive iff (a,a) Î R for every a Î A
R is symmetric iff (a,b) Î R implies (b, a)Î R
R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R
R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

