CSE 311: Foundations of Computing

Lecture 19: Regular Expressions &

Context-Free Grammars

N

I

MAL LANGUAGES

I0™ ANNUAL
OSIUM ON

4
ALY

(eon\

I'E<
7

GRAMMAR!

[Audience looks around]

“What is going on? There must be some context we’re missing”

Review: Languages

* Subsets of strings are called languages

 Examples:
— > = All strings over alphabet X
— Palindromes over X
— Binary strings that don’t have a O aftera 1
— Binary strings with an equal # of O's and 1’s
— Legal variable names. keywords in Java/C/C++
— Syntactically correct Java/C/C++ programs
— English sentences

”

Review: each regular expression is a “pattern

€ matches the empty string
a matches the one character string a

A U B matches all strings that either A matches or B
matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B matches

A* matches all strings that have any number of strings
(even 0) that A matches, one after another

— equivalently, A" =¢ UAUAA U AAA U ...

Examples

Oul)oO0ulo

(O*1*)*

Ou1)*0110 (0L 1)*

Examples

OOul)o0ul)o

{0000, 0010, 1000, 1010}
(0*1*)*

All binary strings

Ou1)*0110 (0L 1)*

Binary strings that contain “0110”

Examples

* All binary strings that have an even # of 1’s

Examples

* All binary strings that have an even # of 1’s

e.g., 0%(10*10*)*

Examples

* All binary strings that have an even # of 1’s

e.g., 0%(10*10*)*

* All binary strings that don’t contain 101

Examples

* All binary strings that have an even # of 1’s

e.g., 0%(10*10*)*

* All binary strings that don’t contain 101

e.g., 0%(1 U 1000*)* (0* U 10%*)

Limitations of Regular Expressions

* Not all languages can be specified by regular
expressions

* Even some easy things like
— Palindromes
— Strings with equal number of O’'s and 1’s

 But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— etc.

Context-Free Grammars

* A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

— A finite set V of variables that can be replaced
— Alphabet X2 of terminal symbols that can’t be replaced
— One variable, usually S, is called the start symbol

* The substitution rules involving a variable A, written as
A—>wy| wy |- |w

where each w; is a string of variables and terminals
—thatisw, € (VU X)"

How CFGs generate strings

* Begin with start symbol S

* If there is some variable A in the current string you
can replace it by one of the w’s in the rules for A

A w | Wy | | w
— Write this as xAy = xwy
— Repeat until no variables left

* The set of strings the CFG generates are all strings
produced in this way (after a finite number of steps)
that have no variables

Example Context-Free Grammars

Example: S—>0S0|1S1|0]|1]c¢

Example Context-Free Grammars

Example: S—>0S0|1S1|0]|1]c¢

The set of all binary palindromes

Example Context-Free Grammars

Example: S—>0S0|1S1|0]|1]c¢

The set of all binary palindromes

Example: S—>0S|S1]¢

Example Context-Free Grammars

Example: S—>0S0|1S1|0]|1]c¢

The set of all binary palindromes

Example: S—>0S|S1]¢

0*1*

Example Context-Free Grammars

Grammar for {0"1":n > 0}
(all strings with same # of O’s and 1’s with all O’s before 1's)

Example Context-Free Grammars

Grammar for {0"1":n > 0}
(all strings with same # of O’s and 1’s with all O’s before 1's)

S—>0S1]| ¢

Example Context-Free Grammars

Grammar for {0"1":n > 0}
(all strings with same # of O’s and 1’s with all O’s before 1's)

S—>0S1]| ¢

Grammar for {0"1"*t10: n > 0}

Example Context-Free Grammars

Grammar for {0"1":n > 0}
(all strings with same # of O’s and 1’s with all O’s before 1's)

S—>0S1]|¢

Grammar for {0"1"*t10: n > 0}

S—>A10
A — OAl | ¢

Example Context-Free Grammars

Example: S—>)]|SS| ¢

Example Context-Free Grammars

Example: S—>)]|SS| ¢

The set of all strings of matched parentheses

Simple Arithmetic Expressions

E> E+E|E<E| (E) | x|y|z]|0|1]2]|3]4
15167819

Generate (2*xx) +vy

Simple Arithmetic Expressions

E> E+E|E<E| (E) | x|y|z]|0|1]2]|3]4
15167819

Generate (2*xx) +vy

E= E+E = (E)+E = (E*E)+E = (2*%E)+E = (2*X)+E = (2*X)+y

Parse Trees

Suppose that grammar G generates a string x
* A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by
symbols of w left-to-right for some rule A —>w

— The symbols of x label the leaves ordered left-to-right
/1N
0SO

1 S 1

S—>0S0|1Ss1|0|1]¢

Parse tree of 01110 .

Simple Arithmetic Expressions

E> E+E|E<E| (E) | x|y|z]|0|1]2]|3]4
15167819

Generate x+yx*z in two ways that give two different
parse trees

Simple Arithmetic Expressions

E> E+E|E<E| (E) | x|y|z]|0|1]2]|3]4
15167819

Generate x+yx*z in two ways that give two different
parse trees

E = E+E = x+E = x+E*E = x+y*E = x+y*z
(multiply y with z and then add to x)

E = E*E = E+E*E = x+E*E = x+y*E = x+y*z
(add x to y and then multiply by z)

