CSE 311: Foundations of Computing

Lecture 19: Regular Expressions \& Context-Free Grammars

Review: Languages

- Subsets of strings are called languages
- Examples:
$-\Sigma^{*}=$ All strings over alphabet Σ
- Palindromes over Σ
- Binary strings that don't have a 0 after a 1
- Binary strings with an equal \# of 0's and 1's
- Legal variable names. keywords in Java/C/C++
- Syntactically correct Java/C/C++ programs
- English sentences

Review: each regular expression is a "pattern"

ε matches the empty string
a matches the one character string a
$\mathbf{A} \cup \mathbf{B}$ matches all strings that either \mathbf{A} matches or \mathbf{B} matches (or both)
$A B$ matches all strings that have a first part that A matches followed by a second part that B matches
A* matches all strings that have any number of strings (even 0) that A matches, one after another

- equivalently, $A^{*}=\varepsilon \cup A \cup A A \cup A A A \cup \ldots$

Examples

$(0 \cup 1) 0(0 \cup 1) 0$
(0*1*)*
$(0 \cup 1) * 0110(0 \cup 1)$ *

Examples

$(0 \cup 1) 0(0 \cup 1) 0$
$\{0000,0010,1000,1010\}$
(0*1*)*

All binary strings
$(0 \cup 1) * 0110(0 \cup 1)$ *
Binary strings that contain "0110"

Examples

- All binary strings that have an even \# of 1's

Examples

- All binary strings that have an even \# of 1's

$$
\text { e.g., } 0^{*}\left(10^{*} 10^{*}\right)^{*}
$$

Examples

- All binary strings that have an even \# of 1's

$$
\text { e.g., } 0^{*}\left(10^{*} 10^{*}\right)^{*}
$$

- All binary strings that don't contain 101

Examples

- All binary strings that have an even \# of 1's

$$
\text { e.g., } 0^{*}\left(10^{*} 10^{*}\right)^{*}
$$

- All binary strings that don't contain 101

$$
\text { e.g., } 0^{*}\left(1 \cup 1000^{*}\right)^{*}\left(0^{*} \cup 10^{*}\right)
$$

Limitations of Regular Expressions

- Not all languages can be specified by regular expressions
- Even some easy things like
- Palindromes
- Strings with equal number of 0's and 1's
- But also more complicated structures in programming languages
- Matched parentheses
- Properly formed arithmetic expressions
- etc.

Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
- A finite set V of variables that can be replaced
- Alphabet Σ of terminal symbols that can't be replaced
- One variable, usually \mathbf{S}, is called the start symbol
- The substitution rules involving a variable \mathbf{A}, written as

$$
A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}
$$

where each w_{i} is a string of variables and terminals

- that is $w_{i} \in(\mathbf{V} \cup \Sigma)^{*}$

How CFGs generate strings

- Begin with start symbol S
- If there is some variable \mathbf{A} in the current string you can replace it by one of the w's in the rules for \mathbf{A}
$-A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}$
- Write this as $x A y \Rightarrow x w y$
- Repeat until no variables left
- The set of strings the CFG generates are all strings produced in this way (after a finite number of steps) that have no variables

Example Context-Free Grammars
Example: $\quad \mathbf{S} \rightarrow \mathbf{0 S O} \mid 1 \mathbf{S 1 | 0 | 1 | \varepsilon}$

Example Context-Free Grammars
Example: $\quad \mathbf{S} \rightarrow \mathbf{0 S O} \mid 1 \mathbf{S 1 | 0 | 1 | \varepsilon}$

The set of all binary palindromes

Example Context-Free Grammars
Example: $\quad \mathbf{S} \rightarrow \mathbf{0 S O} \mid 1 \mathbf{S 1 | 0 | 1 | \varepsilon}$

The set of all binary palindromes

Example: $\quad \mathbf{S} \rightarrow \mathbf{O S}|\mathbf{S} 1| \varepsilon$

Example Context-Free Grammars
Example: $\quad \mathbf{S} \rightarrow \mathbf{0 S O} \mid 1 \mathbf{S 1 | 0 | 1 | \varepsilon}$

The set of all binary palindromes

Example: $\quad \mathbf{S} \rightarrow \mathbf{O S}|\mathbf{S} 1| \varepsilon$

$$
0 * 1 *
$$

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(all strings with same \# of 0's and 1's with all 0's before 1's)

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(all strings with same \# of 0's and 1's with all 0's before 1's)

$$
\mathbf{S} \rightarrow \text { OS1 } \| \varepsilon
$$

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(all strings with same \# of 0's and 1's with all 0's before 1's)

$$
\mathbf{S} \rightarrow \text { OS1 } \| \varepsilon
$$

Grammar for $\left\{0^{n} 1^{n+1} 0: n \geq 0\right\}$

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(all strings with same \# of 0's and 1's with all 0's before 1's)

$$
\mathbf{S} \rightarrow \text { OS1 } \mid \varepsilon
$$

Grammar for $\left\{0^{n} 1^{n+1} 0: n \geq 0\right\}$
$\mathbf{S} \rightarrow \mathrm{A} 10$
$\mathrm{A} \rightarrow 0 \mathrm{~A} 1 \mid \varepsilon$

Example Context-Free Grammars
Example: $\quad \mathbf{S} \rightarrow \mathbf{(S)}|\mathbf{S S}| \varepsilon$

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow \mathbf{(S)}|\mathbf{S S}| \varepsilon$

The set of all strings of matched parentheses

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate ($2 * x$) + y

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate (2*x) + y

$$
\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow(\mathrm{E})+\mathrm{E} \Rightarrow(\mathrm{E} * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{y}
$$

Parse Trees

Suppose that grammar G generates a string x

- A parse tree of x for G has
- Root labeled S (start symbol of G)
- The children of any node labeled A are labeled by symbols of w left-to-right for some rule $A \rightarrow w$
- The symbols of x label the leaves ordered left-to-right

$$
\mathbf{S} \rightarrow 0 \mathbf{S O} 0 \text { 1S1|0|1| } \varepsilon
$$

Parse tree of 01110

Simple Arithmetic Expressions

$$
\begin{aligned}
& E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
& \quad|5| 6|7| 8 \mid 9
\end{aligned}
$$

Generate $\mathrm{x}+\mathrm{y} * \mathrm{z}$ in two ways that give two different parse trees

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $\mathrm{x}+\mathrm{y} * \mathrm{z}$ in two ways that give two different parse trees
$\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow \mathrm{x}+\mathrm{E} \Rightarrow \mathrm{x}+\mathrm{E} * \mathrm{E} \Rightarrow \mathrm{x}+\mathrm{y} * \mathrm{E} \Rightarrow \mathrm{x}+\mathrm{y} * \mathrm{z}$
(multiply y with z and then add to x)
$\mathrm{E} \Rightarrow \mathrm{E} * \mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} * \mathrm{E} \Rightarrow \mathrm{x}+\mathrm{E} * \mathrm{E} \Rightarrow \mathrm{x}+\mathrm{y} * \mathrm{E} \Rightarrow \mathrm{x}+\mathrm{y} * \mathrm{z}$
(add x to y and then multiply by z)

