
CSE 311: Foundations of Computing

Lecture 19:  Regular Expressions &
Context-Free Grammars

[Audience looks around] 
“What is going on? There must be some context we’re missing”



Review: Languages

• Subsets of strings are called languages
• Examples:
– S* =	All strings over alphabet  S
– Palindromes over  S
– Binary strings that don’t have a 0 after a 1
– Binary strings with an equal # of 0’s and 1’s
– Legal variable names. keywords in Java/C/C++
– Syntactically correct Java/C/C++ programs
– English sentences
– ...



Review: each regular expression is a “pattern”

e matches the empty string
a matches the one character string a
A È B matches all strings that either A matches or B

matches (or both)
AB matches all strings that have a first part that A

matches followed by a second part that B matches
A* matches all strings that have any number of strings 

(even 0) that A matches, one after another
– equivalently, A* = e È A È AA È AAA È ...



Examples

(0 È 1) 0 (0 È 1) 0

(0*1*)*

(0 È 1)* 0110 (0 È 1)*



(0 È 1) 0 (0 È 1) 0

(0*1*)*

(0 È 1)* 0110 (0 È 1)*

Examples

{0000, 0010, 1000, 1010}

All binary strings

Binary strings that contain “0110”



Examples

• All binary strings that have an even # of 1’s



Examples

• All binary strings that have an even # of 1’s

e.g.,  0*(10*10*)*



Examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

e.g.,  0*(10*10*)*



Examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

e.g.,  0*(10*10*)*

e.g.,  0*(1 ⋃ 1000*)* (0* ⋃ 10*)



Limitations of Regular Expressions

• Not all languages can be specified by regular 
expressions

• Even some easy things like 
– Palindromes
– Strings with equal number of 0’s and 1’s

• But also more complicated structures in 
programming languages
– Matched parentheses
– Properly formed arithmetic expressions
– etc.



Context-Free Grammars

• A Context-Free Grammar (CFG) is given by a finite set 
of substitution rules involving
– A finite set V of variables that can be replaced
– Alphabet S of terminal symbols that can’t be replaced
– One variable, usually S, is called the start symbol

• The substitution rules involving a variable A, written as
A ® w1 |  w2 | ⋯ | wk

where each wi is a string of variables and terminals
– that is wi ∈ (V È S)*



How CFGs generate strings

• Begin with start symbol S

• If there is some variable A in the current string you 
can replace it by one of the w’s in the rules for A
– A ® w1 |  w2 | ⋯ | wk

– Write this as    xAy ⇒ xwy
– Repeat until no variables left

• The set of strings the CFG generates are all strings 
produced in this way (after a finite number of steps) 
that have no variables



Example Context-Free Grammars

Example: S ® 0S0 | 1S1 | 0 | 1 | e



Example Context-Free Grammars

Example: S ® 0S0 | 1S1 | 0 | 1 | e

The set of all binary palindromes



Example Context-Free Grammars

Example: S ® 0S0 | 1S1 | 0 | 1 | e

Example:      S ® 0S | S1 | e

The set of all binary palindromes



Example Context-Free Grammars

Example: S ® 0S0 | 1S1 | 0 | 1 | e

Example:      S ® 0S | S1 | e

The set of all binary palindromes

0*1*



Example Context-Free Grammars

Grammar for 0*1*: 𝑛 ≥ 0
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)



Example Context-Free Grammars

Grammar for 0*1*: 𝑛 ≥ 0
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

S ® 0S1 | e



Example Context-Free Grammars

Grammar for 0*1*: 𝑛 ≥ 0
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

Grammar for 0*1*/00: 𝑛 ≥ 0

S ® 0S1 | e



Example Context-Free Grammars

Grammar for 0*1*: 𝑛 ≥ 0
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

Grammar for 0*1*/00: 𝑛 ≥ 0

S ® 0S1 | e

S ® A 10
A ® 0A1 | e



Example Context-Free Grammars

Example:       S ® (S) | SS | e



Example Context-Free Grammars

Example:       S ® (S) | SS | e

The set of all strings of matched parentheses



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate  (2∗x) + y



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate  (2∗x) + y

E ⇒ E+E⇒	(E)+E⇒ (E∗E)+E⇒ (2∗E)+E⇒ (2∗x)+E⇒ (2∗x)+y



Parse Trees 

Suppose that grammar G generates a string x
• A parse tree of x for G has
– Root labeled S (start symbol of G)
– The children of any node labeled A are labeled by 

symbols of w left-to-right  for some rule A ® w
– The symbols of x label the leaves ordered left-to-right

S ® 0S0 | 1S1 | 0 | 1 | e

S

0 0S

S1 1

1
Parse tree of 01110



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate x+y∗z in two ways that give two different 
parse trees



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate x+y∗z in two ways that give two different 
parse trees

E ⇒ E+E⇒ x+E⇒	x+E∗E⇒ x+y∗E⇒ x+y∗z
(multiply	y	with	z	and	then	add	to	x)

E ⇒ E∗E⇒	E+E∗E⇒ x+E∗E⇒ x+y∗E⇒ x+y∗z
(add	x	to	y	and	then	multiply	by	z)


