
CSE 311: Foundations of Computing

Lecture 18:  Structural Induction, Regular expressions



S = the set of all x in U for which P(x) is true

This is a non-constructive definition.
It does not tell us how to find these elements 
or how to build this set ourselves.

Recall: Definitions of Sets from Predicates

S = {x Î U : P(x)}



Last time: Recursive Definition of Sets

Recursive definition of set S
• Basis Step: list specific elements of S
• Recursive Step: build new elements of S from 

existing elements of S
• Exclusion Rule: Every element in S built from the 

basis step and a finite number of recursive steps.

Even numbers
Basis:  0 ∈	S
Recursive: If x ∈	S, then x+2 ∈	S 



Last time: Strings

• An alphabet S is any finite set of characters

• The set S* of strings over the alphabet S is 
defined by
– Basis: εÎ S∗ (ε is the empty string w/ no chars)
– Recursive: if 𝑤 Î S*, 𝑎 Î S, then 𝑤𝑎 Î S*



Last time: Rooted Binary Trees

• Basis:  •    is a rooted binary tree
• Recursive step: 

If                and                are rooted binary trees,

then                      also is a rooted binary tree.   

T1 T2

T1
T2



Last time: Rooted Binary Trees in Java

public static class BinaryTree {
static BinaryTree LEAF = ...;
public BinaryTree(

BinaryTree T1, BinaryTree T2) {...}
}

Create general binary trees:
new BinaryTree(

BinaryTree.LEAF,
new BinaryTree(

BinaryTree.LEAF,
BinaryTree.LEAF)



Lsat time: Functions on Recursively Defined Sets
Length:

len(ε) = 0
len(wa) = 1 + len(w) for w ∈	S*, a ∈	S

Concatenation:
x • ε = x for x ∈ S*

x • wa = (x • w)a for x ∈	S*, a ∈	S

Reversal:
ε R = ε
(wa)R = a • wR for w ∈	S*, a ∈	S

Number of c’s in a string:
#c(ε) = 0
#c(wc) = #c(w) + 1 for w ∈	S*

#c(wa) = #c(w) for w ∈	S*, a ∈	S, a ≠ c



Last time: Functions on Rooted Binary Trees

• size(•) = 1

• size ( ) = 1 + size(T1) + size(T2)

• height(•) = 0

• height ( )=1 + max{height(T1), height(T2)}

T1 T2

T1 T2



Last time: Java Functions on Rooted Binary Trees

public int size(BinaryTree T) {
if (T == BinaryTree.LEAF) {
return 1;

} else {
return 1 + size(T.left()) + size(T.right());

}
}

• size(•) = 1

• size ( ) = 1 + size(T1) + size(T2)
T1 T2



Summary

• Any recursively defined set can be translated into 
a Java class

• Any recursively defined function can be translated 
into a Java function
– some (but not all) can be written more cleanly as loops

• Recursively defined functions and sets are our 
mathematical models of code and the data it 
operates on

• Next: how to prove things about code and data



Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case: Show that 𝑃(𝑢) is true for all specific 
elements 𝑢 of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃 is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤 constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	
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Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of 
structural induction:

Recursive definition of ℕ
Basis: 0 ∈	ℕ
Recursive step:  If 𝑘 ∈	ℕ then 𝑘 + 1 ∈	ℕ

Structural induction follows from ordinary 
induction:

Define 𝑄(𝑛) to be “for all 𝑥 ∈ 𝑆 that can be 
constructed in at most
𝑛 recursive steps, 𝑃(𝑥) is true.”



Using Structural Induction

• Let 𝑆 be given by…
– Basis: 6 Î 𝑆 15 ∈ 𝑆
– Recursive:  if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.

Claim:  Every element of 𝑆 is divisible by 3.



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

for some arbitrary x,y ∈	S
4. Inductive Step:  Goal:  Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.      
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).
Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈	S.

Basis: 6Î 𝑆; 15 ∈ 𝑆;
Recursive:  if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆
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Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 

rooted binary trees T1 and T2.
4. Inductive Step:             Goal:  Prove P( ).

By defn, size(             ) =1+size(T1)+size(T2)
≤ 1+2height(T1)+1–1+2height(T2)+1-1                    

by IH for T1 and T2

≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height(      ))–1 ≤ 2height(            )+1 –1

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.
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Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .   
We prove P(y) for all y ∈	S* by structural induction.

Claim: len(x•y) = len(x) + len(y) for all x,y ∈S*

len(ε) = 0 len(wa) = len(w) + 1
x • ε = x x • wa = (x • w)a



Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .   
We prove P(y) for all y ∈	S* by structural induction.

Base Case (y= ε): Let x ∈	S* be arbitrary. Then, len(x • ε) = len(x) =
len(x) + 0 = len(x) + len(ε).  Since x was arbitrary, P(ε) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w ∈	S*

Inductive Step: Goal: Show that P(wa) is true for every a ∈	S
Let a ∈	S. Let x ∈	S*. Then len(x•wa) = len((x•w)a) by defn of •

=  len(x•w)+1 by defn of len
= len(x)+len(w)+1  by I.H.
= len(x)+len(wa) by defn of len

Therefore len(x•wa)= len(x)+len(wa) for all x ∈	S*, so P(wa) is true.

So, by induction len(x•y) = len(x) + len(y) for all x,y ∈ S*

Claim: len(x•y) = len(x) + len(y) for all x,y ∈S*

len(ε) = 0 len(wa) = len(w) + 1
x • ε = x x • wa = (x • w)a
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Theoretical Computer Science



Languages:  Sets of Strings

• Subsets of strings are called languages
• Examples:
– S* =	All strings over alphabet  S
– Palindromes over  S
– Binary strings that don’t have a 0 after a 1
– Binary strings with an equal # of 0’s and 1’s
– Legal variable names. keywords in Java/C/C++
– Syntactically correct Java/C/C++ programs
– English sentences



Foreword on Intro to Theory C.S.

• Look at different ways of defining languages
• See which are more expressive than others
– i.e., which can define more languages

• Later: connect ways of defining languages to 
different types of (restricted) computers
– computers capable of recognizing those languages

i.e., distinguishing strings in the language from not

• Consequence: computers that recognize more 
expressive languages are more powerful



Regular Expressions

Regular expressions over S
• Basis:

e is a regular expression (could also include Æ)
a is a regular expression for any a Î S

• Recursive step:
If A and B are regular expressions then so are:

A È B
AB
A*



Each Regular Expression is a “pattern”

e matches the empty string
a matches the one character string a
A È B matches all strings that either A matches 

or B matches (or both)
AB matches all strings that have a first part that A

matches followed by a second part that B
matches

A* matches all strings that have any number of 
strings (even 0) that A matches, one after 
another



Examples

001*

0*1*



Examples

001*

0*1*

{00, 001, 0011, 00111, …}

Any number of 0’s followed by any number of 1’s



Examples

(0 È 1) 0 (0 È 1) 0

(0*1*)*



Examples

(0 È 1) 0 (0 È 1) 0

(0*1*)*

{0000, 0010, 1000, 1010}

All binary strings



Examples

(0 È 1)* 0110 (0 È 1)*

(00 È 11)* (01010 È 10001) (0 È 1)*



Examples

(0 È 1)* 0110 (0 È 1)*

(00 È 11)* (01010 È 10001) (0 È 1)*

Binary strings that contain “0110”

Binary strings that begin with pairs of characters
followed by “01010” or “10001”



Regular Expressions in Practice

• Used to define the “tokens”: e.g., legal variable names, 
keywords in programming languages and compilers

• Used in grep, a program that does pattern matching 
searches in UNIX/LINUX

• Pattern matching using regular expressions is an essential 
feature of PHP

• We can use regular expressions in programs to process 
strings!



Regular Expressions in Java

• Pattern p = Pattern.compile("a*b"); 
• Matcher m = p.matcher("aaaaab"); 
• boolean b = m.matches();

[01] a 0 or a 1     ^ start of string     $ end of string
[0-9] any single digit       \. period    \, comma  \- minus
. any single character
ab         a followed by b            (AB)
(a|b) a or b (A È B)
a? zero or one of a            (A È e)
a* zero or more of a          A*
a+ one or more of a          AA* 

• e.g.   ^[\-+]?[0-9]*(\.|\,)?[0-9]+$
General form of decimal number  e.g.  9.12  or -9,8 (Europe)


