CSE 311: Foundations of Computing

Lecture 18: Structural Induction, Regular expressions

S = the set of all x in U for which P(x) is true

$$S = \{x \in U : P(x)\}$$

This is a *non-constructive* definition.

It does not tell us how to find these elements or how to build this set ourselves.

Even numbers

Basis: $0 \in S$ Recursive:If $x \in S$, then $x+2 \in S$

Recursive definition of set S

- Basis Step: list specific elements of S
- Recursive Step: build new elements of S from existing elements of S
- Exclusion Rule: Every element in S built from the basis step and a finite number of recursive steps.

- An alphabet Σ is any finite set of characters
- The set Σ* of strings over the alphabet Σ is defined by
 - Basis: $\varepsilon \in \Sigma^*$ (ε is the empty string w/ no chars)
 - **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Last time: Rooted Binary Trees

- Basis:
 is a rooted binary tree
- Recursive step:


```
public static class BinaryTree {
   static BinaryTree LEAF = ...;
   public BinaryTree(
      BinaryTree T1, BinaryTree T2) {...}
}
```

```
Create general binary trees:

new BinaryTree(

BinaryTree.LEAF,

new BinaryTree(

BinaryTree.LEAF,

BinaryTree.LEAF)
```


Lsat time: Functions on Recursively Defined Sets

Length:

```
len(\varepsilon) = 0
len(wa) = 1 + len(w) \text{ for } w \in \Sigma^*, a \in \Sigma
```

Concatenation:

 $x \bullet \varepsilon = x \text{ for } x \in \Sigma^*$

x • wa = (x • w)a for x
$$\in \Sigma^*$$
, a $\in \Sigma$

Reversal:

$$\varepsilon^{R} = \varepsilon$$

(wa)^R = a • w^R for w $\in \Sigma^{*}$, a $\in \Sigma$

Number of c's in a string:

$$\begin{split} &\#_{c}(\varepsilon)=0\\ &\#_{c}(wc)=\#_{c}(w)+1 \text{ for } w\in\Sigma^{*}\\ &\#_{c}(wa)=\#_{c}(w) \text{ for } w\in\Sigma^{*}, a\in\Sigma, a\neq c \end{split}$$

Last time: Functions on Rooted Binary Trees

• size(•) = 1

• size
$$\left(\begin{array}{c} & & \\ &$$

• height(•) = 0

• height
$$\left(\begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & &$$

Last time: Java Functions on Rooted Binary Trees

• size(•) = 1

```
public int size(BinaryTree T) {
    if (T == BinaryTree.LEAF) {
        return 1;
    } else {
        return 1 + size(T.left()) + size(T.right());
    }
```

Summary

- Any recursively defined set can be translated into a Java class
- Any recursively defined function can be translated into a Java function
 - some (but not all) can be written more cleanly as loops
- Recursively defined functions and sets are our mathematical models of code and the data it operates on
- Next: how to prove things about code and data

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Conclude that $\forall x \in S, P(x)$

Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of structural induction:

Recursive definition of \mathbb{N} **Basis:** $0 \in \mathbb{N}$ **Recursive step:** If $k \in \mathbb{N}$ then $k + 1 \in \mathbb{N}$

Structural induction follows from ordinary induction: Define Q(n) to be "for all $x \in S$ that can be

constructed in at most n recursive steps, P(x) is true."

- Let *S* be given by...
 - **Basis:** $6 \in S$ $15 \in S$
 - **Recursive:** if $x, y \in S$ then $x + y \in S$.

1. Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.

- **1.** Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true

- **1.** Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$

4. Inductive Step: Goal: Show P(x+y)

- **1.** Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$
- **4. Inductive Step:** Goal: Show P(x+y)

Since P(x) is true, 3 | x and so x=3m for some integer m and since P(y) is true, 3 | y and so y=3n for some integer n.

Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).

Hence P(x+y) is true.

5. Therefore by induction 3 | x for all $x \in S$.

1. Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , e.g, size(T_1) $\leq 2^{\text{height}(T_1)+1}-1$
- 4. Inductive Step:

Goal: Prove P(T), where T = $\sqrt{1}$

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- **3.** Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , e.g, size(T_1) $\leq 2^{\text{height}(T_1)+1}-1$
- 4. Inductive Step:

Goal: Prove P(T), where T =

 $\label{eq:size} \begin{array}{ll} \text{size}(\bullet) = 1 & \text{size}(\mathbf{T}_1) + \text{size}(\mathbf{T}_2) + 1 \\ \text{height}(\bullet) = 0 & \text{height}(\mathbf{T}) = \max\{\text{height}(\mathbf{T}_1), \text{height}(\mathbf{T}_2)\} + 1 \end{array}$

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- **3.** Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .
- 4. Inductive Step: By defn, size(T_1) = 1+size(T_1)+size(T_2) $\leq 1+2^{\text{height}(T_1)+1}-1+2^{\text{height}(T_2)+1}-1$ by IH for T_1 and T_2 $\leq 2^{\text{height}(T_1)+1}+2^{\text{height}(T_2)+1}-1$ $\leq 2(2^{\text{max}(\text{height}(T_1),\text{height}(T_2))+1})-1$ $= 2(2^{\text{height}(A}))-1 = 2^{\text{height}(A})+1-1$ which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

$$len(\epsilon) = 0$$
 $len(wa) = len(w) + 1$ $x \bullet \epsilon = x$ $x \bullet wa = (x \bullet w)a$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + 0 = len(x) + len(\varepsilon)$. Since x was arbitrary, $P(\varepsilon)$ holds.

$$len(\epsilon) = 0$$
 $len(wa) = len(w) + 1$ $x \bullet \epsilon = x$ $x \bullet wa = (x \bullet w)a$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + 0 = len(x) + len(\varepsilon)$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(x \bullet w) = len(x)+len(w)$ for all x

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

$$len(\epsilon) = 0$$
 $len(wa) = len(w) + 1$ $x \bullet \epsilon = x$ $x \bullet wa = (x \bullet w)a$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + 0 = len(x) + len(\varepsilon)$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(x \bullet w) = len(x)+len(w)$ for all x

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let $a \in \Sigma$. Let $x \in \Sigma^*$. Then $len(x \bullet wa) = len((x \bullet w)a)$ by defn of \bullet

= len(x•w)+1 by defn of len

= len(x)+len(w)+1 by I.H.

= len(x)+len(wa) by defn of len

 $len(\epsilon) = 0$ len(wa) = len(w) + 1 $x \bullet \epsilon = x$ $x \bullet wa = (x \bullet w)a$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + 0 = len(x) + len(\varepsilon)$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(x \bullet w) = len(x)+len(w)$ for all x

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let $a \in \Sigma$. Let $x \in \Sigma^*$. Then $len(x \bullet wa) = len((x \bullet w)a)$ by defn of \bullet

= len(x•w)+1 by defn of len

= len(x)+len(w)+1 by I.H.

= len(x)+len(wa) by defn of len

Therefore len(x•wa)= len(x)+len(wa) for all $x \in \Sigma^*$, so P(wa) is true.

So, by induction $len(x \bullet y) = len(x) + len(y)$ for all $x, y \in \Sigma^*$

Theoretical Computer Science

- Subsets of strings are called languages
- Examples:
 - $-\Sigma^* =$ All strings over alphabet Σ
 - Palindromes over $\ \Sigma$
 - Binary strings that don't have a 0 after a 1
 - Binary strings with an equal # of 0's and 1's
 - Legal variable names. keywords in Java/C/C++
 - Syntactically correct Java/C/C++ programs
 - English sentences

- Look at different ways of defining languages
- See which are more expressive than others

 i.e., which can define more languages
- Later: connect ways of defining languages to different types of (restricted) computers
 - computers capable of recognizing those languages
 i.e., distinguishing strings in the language from not
- Consequence: computers that recognize more expressive languages are more powerful

Regular expressions over $\boldsymbol{\Sigma}$

• Basis:

ε is a regular expression (could also include ∅) α is a regular expression for any α ∈ Σ

• Recursive step:

If **A** and **B** are regular expressions then so are:

A ∪ B AB A*

- ε matches the empty string
- *a* matches the one character string *a*
- A ∪ B matches all strings that either A matches or B matches (or both)
- AB matches all strings that have a first part that A matches followed by a second part that B matches
- A* matches all strings that have any number of strings (even 0) that A matches, one after another

Examples

001*

0*1*

001*

```
\{00, 001, 0011, 00111, ...\}
```

0*1*

Any number of 0's followed by any number of 1's

Examples

 $(0 \cup 1) \ 0 \ (0 \cup 1) \ 0$

Examples

 $(\mathbf{0}\cup\mathbf{1})\,\mathbf{0}\,(\mathbf{0}\cup\mathbf{1})\,\mathbf{0}$

 $\{0000, 0010, 1000, 1010\}$

(0*1*)*

All binary strings

(**0** ∪ **1**)* **0110** (**0** ∪ **1**)*

$(00 \cup 11)^*$ (01010 \cup 10001) (0 \cup 1)*

 $(0 \cup 1)$ * 0110 $(0 \cup 1)$ *

Binary strings that contain "0110"

$(00 \cup 11)*(01010 \cup 10001)(0 \cup 1)*$

Binary strings that begin with pairs of characters followed by "01010" or "10001"

Regular Expressions in Practice

- Used to define the "tokens": e.g., legal variable names, keywords in programming languages and compilers
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of PHP
- We can use regular expressions in programs to process strings!

Regular Expressions in Java

- Pattern p = Pattern.compile("a*b");
- Matcher m = p.matcher("aaaaab");
- boolean b = m.matches(); [01] a 0 or a 1 ^ start of string \$ end of string [0-9] any single digit \backslash . period \backslash , comma \backslash -minus any single character ab a followed by b **(AB)** $(A \cup B)$ (a|b) a or b $(\mathsf{A} \cup \mathsf{E})$ a? zero or one of a a* zero or more of a Α* a+ one or more of a **AA***
- e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+\$
 General form of decimal number e.g. 9.12 or -9,8 (Europe)