CSE 311: Foundations of Computing

Lecture 18: Structural Induction, Regular expressions

Recall: Definitions of Sets from Predicates

$S=$ the set of all x in U for which $P(x)$ is true

$$
S=\{x \in U: P(x)\}
$$

This is a non-constructive definition.
It does not tell us how to find these elements or how to build this set ourselves.

Last time: Recursive Definition of Sets

Even numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+2 \in S$

Recursive definition of set S

- Basis Step: list specific elements of S
- Recursive Step: build new elements of S from existing elements of S
- Exclusion Rule: Every element in S built from the basis step and a finite number of recursive steps.

Last time: Strings

- An alphabet Σ is any finite set of characters
- The set Σ^{*} of strings over the alphabet Σ is defined by
- Basis: $\varepsilon \in \Sigma^{*}$ (ε is the empty string $w /$ no chars)
- Recursive: if $w \in \Sigma^{\star}, a \in \Sigma$, then $w a \in \Sigma^{*}$

Last time: Rooted Binary Trees

- Basis:
- is a rooted binary tree
- Recursive step:

Last time: Rooted Binary Trees in Java

public static class BinaryTree \{
static BinaryTree LEAF = ...;
public BinaryTree(
BinaryTree T1, BinaryTree T2) \{...\}
\}
Create general binary trees:
new BinaryTree(BinaryTree.LEAF, new BinaryTree(BinaryTree.LEAF, BinaryTree.LEAF)

Lsat time: Functions on Recursively Defined Sets

Length:

$$
\begin{aligned}
& \operatorname{len}(\varepsilon)=0 \\
& \operatorname{len}(w a)=1+\operatorname{len}(w) \text { for } w \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Concatenation:

$$
\begin{aligned}
& x \bullet \varepsilon=x \text { for } x \in \Sigma^{*} \\
& x \bullet \text { wa }=(x \bullet w) \text { for } x \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Reversal:

$$
\begin{aligned}
& \varepsilon^{R}=\varepsilon \\
& (w a)^{R}=a \cdot w^{R} \text { for } w \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Number of c's in a string:

$$
\begin{aligned}
& \#_{\mathrm{c}}(\varepsilon)=0 \\
& \#_{\mathrm{c}}(\mathrm{wc})=\#_{\mathrm{c}}(\mathrm{w})+1 \text { for } \mathrm{w} \in \Sigma^{*} \\
& \#_{\mathrm{c}}(\mathrm{wa})=\#_{\mathrm{c}}(\mathrm{w}) \text { for } \mathrm{w} \in \Sigma^{*}, \mathrm{a} \in \Sigma, \mathrm{a} \neq \mathrm{c}
\end{aligned}
$$

Last time: Functions on Rooted Binary Trees

- size(\cdot •) $=1$

- height(\cdot) = 0

Last time: Java Functions on Rooted Binary Trees

- $\operatorname{size}(\bullet)=1$
- size (

public int size(BinaryTree T) \{ if ($T==$ BinaryTree.LEAF) \{ return 1;
\} else \{ return 1 + size(T.left()) + size(T.right()); \}

Summary

- Any recursively defined set can be translated into a Java class
- Any recursively defined function can be translated into a Java function
- some (but not all) can be written more cleanly as loops
- Recursively defined functions and sets are our mathematical models of code and the data it operates on
- Next: how to prove things about code and data

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:
Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:
Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step. Prove that $P(w)$ holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of structural induction:

Recursive definition of \mathbb{N}
Basis: $0 \in \mathbb{N}$
Recursive step: If $k \in \mathbb{N}$ then $k+1 \in \mathbb{N}$

Structural induction follows from ordinary induction:

Define $Q(n)$ to be "for all $x \in S$ that can be constructed in at most n recursive steps, $P(x)$ is true."

Using Structural Induction

- Let S be given by...
- Basis: $6 \in S \quad 15 \in S$
- Recursive: if $x, y \in S$ then $x+y \in S$.

Claim: Every element of S is divisible by 3 .

Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$
4. Inductive Step: Goal: Show $P(x+y)$

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$
4. Inductive Step: Goal: Show $P(x+y)$

Since $P(x)$ is true, $3 \mid x$ and so $x=3 m$ for some integer m and since $P(y)$ is true, $3 \mid y$ and so $y=3 n$ for some integer n.
Therefore $x+y=3 m+3 n=3(m+n)$ and thus $3 \mid(x+y)$.
Hence $P(x+y)$ is true.
5. Therefore by induction $3 \mid x$ for all $x \in S$.

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: For every rooted binary tree $\mathbf{T}, \operatorname{size}(\mathbf{T}) \leq 2^{\text {height }(T)+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.

Claim: For every rooted binary tree $\mathbf{T}, \operatorname{size}(\mathbf{T}) \leq 2^{\text {height }(T)+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: size $(\cdot)=1$, height $(\cdot)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.

Claim: For every rooted binary tree \mathbf{T}, size $(\mathbf{T}) \leq 2^{\text {height }(T)+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: size $(\bullet)=1$, height $(\cdot)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some rooted binary trees T_{1} and T_{2}, e.g, $\operatorname{size}\left(T_{1}\right) \leq 2^{\text {height }\left(T_{1}\right)+1}-1$
4. Inductive Step:
Goal: Prove $\mathrm{P}(\mathrm{T})$, where $\mathrm{T}=\widehat{\lambda}$

Claim: For every rooted binary tree \mathbf{T}, size $(\mathbf{T}) \leq 2^{\text {height }(T)+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: size $(\cdot)=1$, height $(\cdot)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some rooted binary trees T_{1} and $\left.T_{2}, e . g, \operatorname{size}\left(T_{1}\right) \leq 2^{\text {height }} \mathrm{T}_{1}\right)+1$-1
4. Inductive Step: Goal: Prove $\mathrm{P}(\mathrm{T})$, where $\mathrm{T}=\widehat{\lambda}$

$$
\begin{array}{ll}
\operatorname{size}(\cdot)=1 & \operatorname{size}(\mathbf{T})=\operatorname{size}\left(\mathbf{T}_{1}\right)+\operatorname{size}\left(\mathbf{T}_{2}\right)+1 \\
\operatorname{height}(\cdot)=0 & \operatorname{height}(\mathbf{T})=\max \left\{\operatorname{height}\left(\mathbf{T}_{\mathbf{1}}\right), \operatorname{height}\left(\mathbf{T}_{2}\right)\right\}+1
\end{array}
$$

Claim: For every rooted binary tree \mathbf{T}, size $(\mathbf{T}) \leq 2^{\text {height }(T)+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: size $(\cdot)=1$, height $(\cdot)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some
4. Inductive Step: By defn, $\operatorname{size}(\widehat{\text {, }})=1+\operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right)$

$$
\begin{array}{r}
\leq 1+2^{\text {height }\left(\mathbf{T}_{1}\right)+1}-1+2^{\text {height }\left(\mathbf{T}_{2}\right)+1}-1 \\
\text { by IH for } \mathbf{T}_{1} \text { and } \mathbf{T}_{2}
\end{array}
$$

$$
\leq 2^{\text {height }\left(T_{1}\right)+1}+2^{\text {height }\left(T_{\mathbf{2}}\right)+1}-1
$$

$$
\leq 2\left(2^{\max \left(\text { height }\left(T_{1}\right), \text { height }\left(T_{2}\right)\right)+1}\right)-1
$$

which is what we wanted to show.
5. So, the $P(T)$ is true for all rooted bin. trees by structural induction.

Claim: len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $P(y)$ be "len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x \in \Sigma^{* "}$. We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.

$$
\begin{array}{ll}
\operatorname{len}(\varepsilon)=0 & \operatorname{len}(w a)=\operatorname{len}(w)+1 \\
x \bullet \varepsilon=x & x \bullet w a=(x \bullet w) a
\end{array}
$$

Claim: $\operatorname{len}(x \bullet y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $P(y)$ be "len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x \in \Sigma^{* *}$.
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Base Case $(y=\varepsilon)$: Let $x \in \Sigma^{*}$ be arbitrary. Then, len $(x \bullet \varepsilon)=\operatorname{len}(x)=$ len $(x)+0=\operatorname{len}(x)+\operatorname{len}(\varepsilon)$. Since x was arbitrary, $P(\varepsilon)$ holds.

$$
\begin{array}{ll}
\operatorname{len}(\varepsilon)=0 & \operatorname{len}(w a)=\operatorname{len}(w)+1 \\
x \bullet \varepsilon=x & x \bullet w a=(x \bullet w) a
\end{array}
$$

Claim: $\operatorname{len}(x \bullet y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $\mathrm{P}(\mathrm{y})$ be "len $(\mathrm{x} \cdot \mathrm{y})=\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{y})$ for all $\mathrm{x} \in \Sigma^{* *}$.
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Base Case $(y=\varepsilon)$: Let $x \in \Sigma^{*}$ be arbitrary. Then, len $(x \bullet \varepsilon)=\operatorname{len}(x)=$

$$
\operatorname{len}(x)+0=\operatorname{len}(x)+\operatorname{len}(\varepsilon) . \text { Since } x \text { was arbitrary, } P(\varepsilon) \text { holds. }
$$

Inductive Hypothesis: Assume that $P(w)$ is true for some arbitrary $w \in \Sigma^{*}$, i.e., len $(x \cdot w)=\operatorname{len}(x)+\operatorname{len}(w)$ for all x Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{wa})$ is true for every a $\in \Sigma$

$$
\begin{array}{ll}
\operatorname{len}(\varepsilon)=0 & \operatorname{len}(\mathrm{wa})=\operatorname{len}(\mathrm{w})+1 \\
\mathrm{x} \bullet \varepsilon=\mathrm{x} & \mathrm{x} \bullet \mathrm{wa}=(\mathrm{x} \bullet \mathrm{w}) \mathrm{a} \\
\hline
\end{array}
$$

Claim: len $(x \bullet y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $\mathrm{P}(\mathrm{y})$ be "len $(\mathrm{x} \cdot \mathrm{y})=\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{y})$ for all $\mathrm{x} \in \Sigma^{* *}$.
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Base Case $(y=\varepsilon)$: Let $x \in \Sigma^{*}$ be arbitrary. Then, len $(x \bullet \varepsilon)=\operatorname{len}(x)=$ len $(x)+0=\operatorname{len}(x)+\operatorname{len}(\varepsilon)$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that $P(w)$ is true for some arbitrary $w \in \Sigma^{*}$, i.e., len $(x \cdot w)=\operatorname{len}(x)+\operatorname{len}(w)$ for all x Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{wa})$ is true for every a $\in \Sigma$
Let $a \in \Sigma$. Let $x \in \Sigma^{*}$. Then len $(x \bullet w a)=\operatorname{len}((x \bullet w) a)$ by defn of \bullet

$$
\begin{aligned}
& =\operatorname{len}(x \bullet w)+1 \text { by defn of len } \\
& =\operatorname{len}(x)+\operatorname{len}(w)+1 \text { by I.H. } \\
& =\operatorname{len}(x)+\operatorname{len}(w a) \text { by defn of len }
\end{aligned}
$$

$$
\begin{array}{ll}
\operatorname{len}(\varepsilon)=0 & \operatorname{len}(w a)=\operatorname{len}(w)+1 \\
x \bullet \varepsilon=x & x \bullet w a=(x \bullet w) a \\
\hline
\end{array}
$$

Claim: len $(x \bullet y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $\mathrm{P}(\mathrm{y})$ be "len $(\mathrm{x} \cdot \mathrm{y})=\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{y})$ for all $\mathrm{x} \in \Sigma^{* "}$.
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Base Case $(y=\varepsilon)$: Let $x \in \Sigma^{*}$ be arbitrary. Then, len $(x \cdot \varepsilon)=\operatorname{len}(x)=$ len $(x)+0=\operatorname{len}(x)+\operatorname{len}(\varepsilon)$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that $P(w)$ is true for some arbitrary $w \in \Sigma^{*}$, i.e., len $(x \bullet w)=$ len $(x)+\operatorname{len}(w)$ for all x Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{wa})$ is true for every a $\in \Sigma$
Let $a \in \Sigma$. Let $x \in \Sigma^{*}$. Then len $(x \bullet w a)=\operatorname{len}((x \bullet w) a)$ by defn of \bullet

$$
\begin{aligned}
& =\operatorname{len}(x \cdot w)+1 \text { by defn of len } \\
& =\operatorname{len}(x)+\operatorname{len}(w)+1 \text { by I.H. } \\
& =\operatorname{len}(x)+\operatorname{len}(w a) \text { by defn of len }
\end{aligned}
$$

Therefore len $(x \cdot w a)=$ len $(x)+\operatorname{len}(w a)$ for all $x \in \Sigma^{*}$, so $P(w a)$ is true.
So, by induction len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Theoretical Computer Science

Languages: Sets of Strings

- Subsets of strings are called languages
- Examples:
$-\Sigma^{*}=$ All strings over alphabet Σ
- Palindromes over Σ
- Binary strings that don't have a 0 after a 1
- Binary strings with an equal \# of 0's and 1's
- Legal variable names. keywords in Java/C/C++
- Syntactically correct Java/C/C++ programs
- English sentences

Foreword on Intro to Theory C.S.

- Look at different ways of defining languages
- See which are more expressive than others
- i.e., which can define more languages
- Later: connect ways of defining languages to different types of (restricted) computers
- computers capable of recognizing those languages i.e., distinguishing strings in the language from not
- Consequence: computers that recognize more expressive languages are more powerful

Regular Expressions

Regular expressions over Σ

- Basis:
ε is a regular expression (could also include \varnothing)
a is a regular expression for any $a \in \Sigma$
- Recursive step:

If A and B are regular expressions then so are:
$A \cup B$
AB
A*

Each Regular Expression is a "pattern"

ε matches the empty string
a matches the one character string a
$A \cup B$ matches all strings that either A matches or B matches (or both)
$A B$ matches all strings that have a first part that A matches followed by a second part that B matches
A* matches all strings that have any number of strings (even 0) that A matches, one after another

Examples

001*

0*1*

Examples

001*

$\{00,001,0011,00111, \ldots\}$

0*1*

Any number of O's followed by any number of 1's

Examples

$(0 \cup 1) 0(0 \cup 1) 0$
(0*1*)*

Examples

$(0 \cup 1) 0(0 \cup 1) 0$
$\{0000,0010,1000,1010\}$
(0*1*)*

All binary strings

Examples

$(0 \cup 1)$ * $0110(0 \cup 1)$ *
$(00 \cup 11) *(01010 \cup 10001)(0 \cup 1) *$

Examples

$(0 \cup 1) * 0110(0 \cup 1)$ *

Binary strings that contain "0110"
$(00 \cup 11) *(01010 \cup 10001)(0 \cup 1) *$
Binary strings that begin with pairs of characters followed by "01010" or "10001"

Regular Expressions in Practice

- Used to define the "tokens": e.g., legal variable names, keywords in programming languages and compilers
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of PHP
- We can use regular expressions in programs to process strings!

Regular Expressions in Java

- Pattern p = Pattern.compile("a*b");
- Matcher m = p.matcher("aaaaab");
- boolean b = m.matches();
[01] a 0 or a 1 ^ start of string \$ end of string
[0-9] any single digit \. period
, comma \-minus
- any single character
ab a followed by b
(a|b) a orb
a? zero or one of a
a* zero or more of a
at one or more of a AA*
- e.g. ^[\-+]?[0-9]*(\. $\backslash,) ?[0-9]+\$$

General form of decimal number e.g. 9.12 or $-9,8$ (Europe)

