CSE 311: Foundations of Computing

Lecture 18: Structural Induction, Regular expressions

OH NO! THE KILLER || BUT TD FIND THEM WED HAVE T0 SEARCH
WHENEVER T LEARN A | | MUST HAVE ROLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
NEW SKILL T ConcocT | |HER ON VACATION ! sa'mw,&s FORMATTED LIKE AN ADDRESS!

ELABORATE FANTASY |
SCENARI0S WHERE (T _ ~— [T5 HOPELESS!
LETS ME. SVE THE DAY. %

(EVERVBIDY STND / T KNOW REGUAR
= EXPRESSIONS .

N (/)
5 iR 5

Recall: Definitions of Sets from Predicates

S = the set of all x in U for which P(x) is true

S={x € U:P(x)}

This is a non-constructive definition.

It does not tell us how to find these elements
or how to build this set ourselves.

Last time: Recursive Definition of Sets

Even numbers

Basis: O0€eS
Recursive: If x€S, then x+2 €S

Recursive definition of set S
« Basis Step: list specific elements of S

 Recursive Step: build new elements of S from
existing elements of S

* Exclusion Rule: Every element in S built from the
basis step and a finite number of recursive steps.

Last time: Strings

* An alphabet 2 is any finite set of characters

* The set 2* of strings over the alphabet X is
defined by

— Basis: £ € 2™ (¢ is the empty string w/ no chars)
— Recursive: ifw e 2*, a € 2, then wa € X*

Last time: Rooted Binary Trees

* Basis: * is arooted binary tree
* Recursive step:

Last time: Rooted Binary Trees in Java

public static class BinaryTree {
static BinaryTree LEAF = ...;
public BinaryTree(
BinaryTree T1, BinaryTree T2) {...}

¥

Create general binary trees:
new BinaryTree(
BinaryTree.LEAF,
new BinaryTree(
BinaryTree.LEAF,
BinaryTree.LEAF)

Lsat time: Functions on Recursively Defined Sets

Length:
len(e) =0
len(wa)=1+len(w)forw eX* aeX

Concatenation:
xec=xforxe X"
xewa=(xew)aforxeX* aeX

Reversal:
eR=¢g
(wa)R=aewkRforweX* aeX

Number of c¢’s in a string:
#(e)=0
(wc) =# (w)+1forweX”
#(wa)=#(w)forwe X", a€eX, azc

Last time: Functions on Rooted Binary Trees

e size(*)=1

=1 + size(T,) + size(T,)

)=1 + max{height(T,), height(T,)}

Last time: Java Functions on Rooted Binary Trees

e size(*)=1

* size (/\) =1 + size(T,) + size(T,)
B A

Snnnnnnt s s

public int size(BinaryTree T) {
1f (T == BinaryTree.LEAF) {
return 1;
1 else {
return 1 + size(T.left()) + size(T.right());

¥
¥

Summary

* Any recursively defined set can be translated into
a Java class

* Any recursively defined function can be translated
into a Java function

— some (but not all) can be written more cleanly as loops

* Recursively defined functions and sets are our
mathematical models of code and the data it
operates on

* Next: how to prove things about code and data

Structural Induction

How to prove V x € S, P(x) is true:

Base Case: Show that P(u) is true for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude thatV x € S, P(x)

Structural Induction

How to prove V x € S, P(x) is true;

...........

............

Base Case: /%w that P(u) is true/for all specific
elements u of S mentioned in the (Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step@ove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude thatV x € S, P(x)

Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of
structural induction:
Recursive definition of N
Basis: 0 €N
Recursive step: If keNthenk+1€N

Structural induction follows from ordinary

induction:
Define Q(n) to be “for all x € S that can be

constructed in at most
n recursive steps, P(x) is true.”

Using Structural Induction

 Let S be given by...
—Basis: 6eS 15€S
— Recursive: if x,y € S thenx +y € S.

Claim: Every element of S is divisible by 3.

Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”". We prove that P(x) is true for all x € S by
structural induction.

Basis: 6 < S5; 15 € S;
Recursive: if x,y €S thenx+y €S

Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”". We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

Basis: 6 < S5; 15 € S;
Recursive: if x,y €S thenx+y €S

Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”". We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y € S

4. Inductive Step: |Goal: Show P(x+y)

Basis: 6 < S5; 15 € S;
Recursive: if x,y €S thenx+y €S

Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”". We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y € S

4. Inductive Step: |Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.

Therefore x+y=3m+3n=3(m+n) and thus 3| (x+y).

Hence P(x+y) is true.
5. Therefore by induction 3|x for all x € S.

Basis: 6 < S5; 15 € S;
Recursive: if x,y €S thenx+y €S

Claim: For every rooted binary tree T, size(T) < 2height(T)+1_1

1. Let P(T) be “size(T) < 2heieht(T+1-1" We prove P(T) for all rooted binary
trees T by structural induction.

Basis: * is arooted binary tree
Recursive step:

......................

...........
RYTTCLCLLLH

Claim: For every rooted binary tree T, size(T) < 2height(T)+1_1

1. Let P(T) be “size(T) < 2heieht(T+1-1" We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0, and 2°+1-1=21-1=1 so P(e) is true.

Basis: * is arooted binary tree
Recursive step:

......................

...........
RYTTCLCLLLH

Claim: For every rooted binary tree T, size(T) < 2height(T)+1_1

1. Let P(T) be “size(T) < 2heieht(T+1-1" We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0, and 2°+1-1=21-1=1 so P(e) is true.

3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, e.g, size(T,) < 2height(T)+1_14

4. Inductive Step:

Goal: Prove P(T), where T =

..........

Basis: * is arooted binary tree
Recursive step:

......................

...........
RYTTCLCLLLH

Claim: For every rooted binary tree T, size(T) < 2height(T)+1 _ 1

1. Let P(T) be “size(T) < 2heieht(T+1-1" We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0, and 2°+1-1=21-1=1 so P(e) is true.

3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, e.g, size(T,) < 2height(T)+1_14

4. Inductive Step: Goal: Prove P(T), where T =

...............

size(e) =1 size(T) = size(T,) + size(T,) + 1
height(e) =0 height(T) = max{height(T,), height(T,)} + 1

Claim: For every rooted binary tree T, size(T) < 2height(T)+1 _ 1

1. Let P(T) be “size(T) < 2heieht(T+1-1" We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0, and 2°+1-1=21-1=1 so P(e) is true.

3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,.

4. Inductive Step Goal: Prove P

R O A L

................

................

g 1+ height(T1)+1_1 4 Qheight(T2)+1_1
by IH for T, and T,
< height(Tq)+1{ yheight(Ta)+1_q

< 2(2max(height(T1) ,height(T2) +1) -1

(gt 2)1 < g L0011

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.

Claim: len(xey) = len(x) + len(y) for all x,y € ¥

Let P(y) be “len(xey) = len(x) + len(y) forall x e X*".
We prove P(y) for all y € Z* by structural induction.

len(e) =0 len(wa) = len(w) + 1
X®E=X X ®wa=(xe®w)a

Claim: len(xey) = len(x) + len(y) for all x,y € ¥

Let P(y) be “len(xey) = len(x) + len(y) forall x e X*".
We prove P(y) for all y € Z* by structural induction.

Base Case (y=¢): Let x € X* be arbitrary. Then, len(x ® €) = len(x) =
len(x) + 0 = len(x) + len(g). Since x was arbitrary, P(¢) holds.

len(e) =0 len(wa) = len(w) + 1
X®E=X X ®wa=(xe®w)a

Claim: len(xey) = len(x) + len(y) for all x,y € ¥

Let P(y) be “len(xey) = len(x) + len(y) forall x e X*".
We prove P(y) for all y € Z* by structural induction.

Base Case (y=¢): Let x € X* be arbitrary. Then, len(x ® €) = len(x) =
len(x) + 0 = len(x) + len(g). Since x was arbitrary, P(c) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w € X*, i.e., len(xew) = len(x)+len(w) for all x
Inductive Step: | Goal: Show that P(wa) is true for every a € X

len(e) =0 len(wa) = len(w) + 1
X®E=X X ®wa=(xe®w)a

Claim: len(xey) = len(x) + len(y) for all x,y € ¥

Let P(y) be “len(xey) = len(x) + len(y) forall x e X*".
We prove P(y) for all y € Z* by structural induction.

Base Case (y=¢): Let x € X* be arbitrary. Then, len(x ® €) = len(x) =
len(x) + 0 = len(x) + len(g). Since x was arbitrary, P(c) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary

Inductive Step:

wE X", i.e., len(xew) = len(x)+len(w) for all x

Goal: Show that P(wa) is true for everya €

Let a € 2. Letx € X*. Then len(xewa) = len((xew)a) by defn of e

= |len(xew)+1 by defn of len
= len(x)+len(w)+1 by I.H.
= len(x)+len(wa) by defn of len

len(e) =0 len(wa) = len(w) + 1
X®E=X X ®wa=(xe®w)a

Claim: len(xey) = len(x) + len(y) for all x,y € ¥

Let P(y) be “len(xey) = len(x) + len(y) forall x e X*".
We prove P(y) for all y € Z* by structural induction.

Base Case (y=¢): Let x € X* be arbitrary. Then, len(x ® €) = len(x) =
len(x) + 0 = len(x) + len(g). Since x was arbitrary, P(c) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w € X*, i.e., len(xew) = len(x)+len(w) for all x

Inductive Step: | Goal: Show that P(wa) is true for every a € X

Let a € 2. Letx € X*. Then len(xewa) = len((xew)a) by defn of e
= |len(xew)+1 by defn of len
= len(x)+len(w)+1 by I.H.
= len(x)+len(wa) by defn of len

Therefore len(xewa)= len(x)+len(wa) for all x € Z*, so P(wa) is true.

So, by induction len(xey) = len(x) + len(y) for all x,y € X"

Theoretical Computer Science

Languages: Sets of Strings

* Subsets of strings are called languages

 Examples:
— > = All strings over alphabet X
— Palindromes over X
— Binary strings that don’t have a O aftera 1
— Binary strings with an equal # of O's and 1’s
— Legal variable names. keywords in Java/C/C++
— Syntactically correct Java/C/C++ programs
— English sentences

Foreword on Intro to Theory C.S.

* Look at different ways of defining languages

 See which are more expressive than others
— i.e., which can define more languages

* Later: connect ways of defining languages to
different types of (restricted) computers

— computers capable of recognizing those languages
l.e., distinguishing strings in the language from not

 Consequence: computers that recognize more
expressive languages are more powerful

Regular Expressions

Regular expressions over 2

* Basis:
€ is a regular expression (could also include @)
a is a regular expression forany a € -

* Recursive step:
If A and B are regular expressions then so are:
AUB
AB
A*

Each Regular Expression is a “pattern”

€ matches the empty string
a matches the one character string a

A U B matches all strings that either A matches
or B matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after

another

Examples

001*

O*1*

Examples

001*

{00, 001, 0011, 00111, ...}

O*1*

Any number of O’s followed by any number of 1’s

Examples

OOul)o0ul)o

(O*1*)*

Examples

OOul)o0ul)o

{0000, 0010, 1000, 1010}

(O*1*)*

All binary strings

Examples

Ou1)*0110 (0L 1)*

(OO 11)* (01010 v 10001) (O L 1)*

Examples

Ou1)*0110 (0L 1)*

Binary strings that contain “0110”

(OO 11)* (01010 v 10001) (O L 1)*

Binary strings that begin with pairs of characters
followed by “01010” or “10001”

Regular Expressions in Practice

» Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

* Usedin grep, a program that does pattern matching
searches in UNIX/LINUX

e Pattern matching using regular expressions is an essential
feature of PHP

* We can use regular expressions in programs to process
strings!

Regular Expressions in Java

* Pattern p = Pattern.compile("a*b");
 Matcher m = p.matcher("aaaaab");

* boolean b = m.matches();
[01] aOoral “startofstring $ end of string

[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(a|b) aorb (A U B)
a? zero or one of a (A U g)
ax zero or more of a A*

a+ one or more of a AA*

* eg A[\-+]1?[0-9]1*(\.I\,)?[0-9]1+S
General form of decimal number e.g. 9.12 or-9,8 (Europe)

