CSE 311: Foundations of Computing

Lecture 17: Recursively Defined Sets & Structural Induction

Midterm

- Wednesday in class
- Covers material up to end of ordinary induction
- Closed book, closed notes

 will include reference sheets that seem helpful
- No calculators
 - arithmetic is intended to be straightforward

Midterm

- 5 problems covering:
 - Logic / English translation
 - Boolean circuits, algebra, and normal forms
 - Solving modular equations
 - Induction
 - Set theory
 - English proofs

Last time: Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes *n* steps for gcd(a, b) with $a \ge b > 0$. Then, $a \ge f_{n+1}$.

Why does this help us bound the running time of Euclid's Algorithm?

We already proved that $f_n \ge 2^{n/2-1}$ so $f_{n+1} \ge 2^{(n-1)/2}$

Therefore: if Euclid's Algorithm takes n steps for gcd(a, b) with $a \ge b > 0$ then $a \ge 2^{(n-1)/2}$

> so $(n-1)/2 \le \log_2 a$ or $n \le 1+2 \log_2 a$ i.e., # of steps ≤ 1 + twice the # of bits in a.

Last time: Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes *n* steps for gcd(a, b) with $a \ge b > 0$. Then, $a \ge f_{n+1}$.

An informal way to get the idea: Consider an n step gcd calculation starting with r_{n+1} =a and r_n =b:

Now $r_1 \ge 1$ and each q_k must be ≥ 1 . If we replace all the q_k 's by 1 and replace r_1 by 1, we can only reduce the r_k 's. After that reduction, $r_k = f_k$ for every k.

Theorem: Suppose that Euclid's Algorithm takes *n* steps for gcd(a, b) with $a \ge b > 0$. Then, $a \ge f_{n+1}$.

We go by strong induction on n.

Let P(n) be "gcd(a,b) with $a \ge b>0$ takes n steps $\rightarrow a \ge f_{n+1}$ " for all $n \ge 1$.

Base Case: n=1 Suppose Euclid's Algorithm with $a \ge b > 0$ takes 1 step. By assumption, $a \ge b \ge 1 = f_2$ so P(1) holds.

Induction Hypothesis: Suppose that for some integer $k \ge 1$, P(j) is true for all integers j s.t. $1 \le j \le k$

Theorem: Suppose that Euclid's Algorithm takes *n* steps for gcd(a, b) with $a \ge b > 0$. Then, $a \ge f_{n+1}$.

We go by strong induction on n.

Let P(n) be "gcd(a,b) with $a \ge b>0$ takes n steps $\rightarrow a \ge f_{n+1}$ " for all $n \ge 1$.

Base Case: n=1 Suppose Euclid's Algorithm with $a \ge b > 0$ takes 1 step. By assumption, $a \ge b \ge 1 = f_2$ so P(1) holds.

Induction Hypothesis: Suppose that for some integer $k \ge 1$, P(j) is true for all integers j s.t. $1 \le j \le k$

Inductive Step: We want to show:if gcd(a,b) with $a \ge b > 0$ takes k+1steps, then $a \ge f_{k+2}$.

Induction Hypothesis: Suppose that for some integer $k \ge 1$, P(j) is true for all integers j s.t. $1 \le j \le k$

Inductive Step: Goal: if gcd(a,b) with $a \ge b > 0$ takes k+1 steps, then $a \ge f_{k+2}$.

Now if k+1=2, then Euclid's algorithm on a and b can be written as $a = q_2b + r_1$ $b = q_1r_1$ and $r_1 > 0$.

Also, since $a \ge b > 0$ we must have $q_2 \ge 1$ and $b \ge 1$.

So $a = q_2b + r_1 \ge b + r_1 \ge 1 + 1 = 2 = f_3 = f_{k+2}$ as required.

Induction Hypothesis: Suppose that for some integer $k \ge 1$, P(j) is true for all integers j s.t. $1 \le j \le k$

Inductive Step: Goal: if gcd(a,b) with $a \ge b > 0$ takes k+1 steps, then $a \ge f_{k+2}$.

Next suppose that $k+1 \ge 3$ so for the first 3 steps of Euclid's algorithm on a and b we have

$$a = q_{k+1}b + r_k$$

$$b = q_k r_k + r_{k-1}$$

$$r_k = q_{k-1}r_{k-1} + r_{k-2}$$

and there are k-2 more steps after this.

Induction Hypothesis: Suppose that for some integer $k \ge 1$, P(j) is true for all integers j s.t. $1 \le j \le k$

Inductive Step: Goal: if gcd(a,b) with $a \ge b > 0$ takes k+1 steps, then $a \ge f_{k+2}$.

Next suppose that $k+1 \ge 3$ so for the first 3 steps of Euclid's algorithm on a and b we have

$$a = q_{k+1}b + r_k$$

$$b = q_k r_k + r_{k-1}$$

 $r_k = q_{k-1}r_{k-1} + r_{k-2}$

and there are k-2 more steps after this. Note that this means that the $gcd(b, r_k)$ takes k steps and $gcd(r_k, r_{k-1})$ takes k-1 steps.

So since k, $k-1 \ge 1$ by the IH we have $b \ge f_{k+1}$ and $r_k \ge f_k$.

Induction Hypothesis: Suppose that for some integer $k \ge 1$, P(j) is true for all integers j s.t. $1 \le j \le k$

Inductive Step: Goal: if gcd(a,b) with $a \ge b > 0$ takes k+1 steps, then $a \ge f_{k+2}$.

Next suppose that $k+1 \ge 3$ so for the first 3 steps of Euclid's algorithm on a and b we have

$$a = q_{k+1}b + r_k$$

$$b = q_k r_k + r_{k-1}$$

 $r_k = q_{k-1}r_{k-1} + r_{k-2}$

and there are k-2 more steps after this. Note that this means that the $gcd(b, r_k)$ takes k steps and $gcd(r_k, r_{k-1})$ takes k-1 steps.

So since k, $k-1 \ge 1$ by the IH we have $b \ge f_{k+1}$ and $r_k \ge f_k$.

Also, since $a \ge b$ we must have $q_{k+1} \ge 1$.

So $a = q_{k+1}b + r_k \ge b + r_k \ge f_{k+1} + f_k = f_{k+2}$ as required.

Recursive Definitions: Data

Natural numbersBasis: $0 \in S$ Recursive:If $x \in S$, then $x+1 \in S$

Even numbers

Basis: $0 \in S$ Recursive:If $x \in S$, then $x+2 \in S$

Recursive definition of set S

- Basis Step: $0 \in S$
- Recursive Step: If $x \in S$, then $x + 2 \in S$
- Exclusion Rule: Every element in S follows from the basis step and a finite number of recursive steps.

We need the exclusion rule because otherwise $S=\mathbb{N}$ would satisfy the other two parts. However, we won't always write it down on these slides.

Natural numbersBasis: $0 \in S$ Recursive:If $x \in S$, then $x+1 \in S$

Even numbers

Basis: $0 \in S$ Recursive:If $x \in S$, then $x+2 \in S$

Powers of 3: Basis: $1 \in S$ Recursive: If $x \in S$, then $3x \in S$.

Basis: $(0, 0) \in S, (1, 1) \in S$ Recursive: If (n-1, x) ∈ S and (n, y) ∈ S, then (n+1, x + y) ∈ S.

?

Natural numbersBasis: $0 \in S$ Recursive:If $x \in S$, then $x+1 \in S$

Even numbers

Basis: $0 \in S$ Recursive:If $x \in S$, then $x+2 \in S$

Powers of 3: Basis: $1 \in S$ Recursive: If $x \in S$, then $3x \in S$.

Basis: $(0, 0) \in S, (1, 1) \in S$ Recursive: If (n-1, x) ∈ S and (n, y) ∈ S, Fibonacci numbers then (n+1, x + y) ∈ S.

- An alphabet Σ is any finite set of characters
- The set Σ* of strings over the alphabet Σ is defined by
 - **Basis:** $\epsilon \in \Sigma^*$ (ϵ is the empty string w/ no chars)
 - **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Palindromes are strings that are the same backwards and forwards

Basis:

 ϵ is a palindrome and any $a \in \Sigma$ is a palindrome

Recursive step:

If p is a palindrome, then apa is a palindrome for every $a \in \Sigma$

All Binary Strings with no 1's before 0's

All Binary Strings with no 1's before 0's

Basis: $\epsilon \in S$ Recursive: If $x \in S$, then $0x \in S$ If $x \in S$, then $x1 \in S$

Functions on Recursively Defined Sets (on Σ^*)

Length:

```
len(\varepsilon) = 0
len(wa) = 1 + len(w) \text{ for } w \in \Sigma^*, a \in \Sigma
```

Concatenation:

$$x \bullet \varepsilon = x$$
 for $x \in \Sigma^*$

$$x \bullet wa = (x \bullet w)a$$
 for $x \in \Sigma^*$, $a \in \Sigma$

Reversal:

$$\varepsilon^{R} = \varepsilon$$

(wa)^R = a • w^R for w $\in \Sigma^{*}$, a $\in \Sigma$

Number of c's in a string:

$$\begin{split} \#_{c}(\varepsilon) &= 0 \\ \#_{c}(wc) &= \#_{c}(w) + 1 \text{ for } w \in \Sigma^{*} \\ \#_{c}(wa) &= \#_{c}(w) \text{ for } w \in \Sigma^{*}, a \in \Sigma, a \neq c \end{split}$$

• Basis: • is a rooted binary tree

- Basis:
 is a rooted binary tree
- Recursive step:

public static class BinaryTree {
 static BinaryTree LEAF = ...;
 public BinaryTree(
 BinaryTree T1, BinaryTree T2) {

Recursively-defined Sets translate natural into Java classes

Create a binary tree with BinaryTree.LEAF or new BinaryTree(T1, T2)

Defining Functions on Rooted Binary Trees

• size(•) = 1

• size
$$\left(\begin{array}{c} & & \\ &$$

• height(•) = 0

• height
$$\left(\begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & &$$

Functions on Rooted Binary Trees in Java

• size(•) = 1

public int size(BinaryTree T) {
 if (T == BinaryTree.LEAF) {
 return 1;

} else {

Recursive Functions translate natural into Java functions

Recursive Sets translate natural into Java classes

return 1 + size(T.left()) + size(T.right());
}

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Conclude that $\forall x \in S, P(x)$