CSE 311: Foundations of Computing

Lecture 17: Recursively Defined Sets \& Structural Induction

Midterm

- Wednesday in class
- Covers material up to end of ordinary induction
- Closed book, closed notes
- will include reference sheets that seem helpful
- No calculators
- arithmetic is intended to be straightforward

Midterm

- 5 problems covering:
- Logic / English translation
- Boolean circuits, algebra, and normal forms
- Solving modular equations
- Induction
- Set theory
- English proofs

Last time: Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a \geq b>0$. Then, $a \geq f_{n+1}$.

Why does this help us bound the running time of Euclid's Algorithm?

We already proved that $f_{n} \geq 2^{n / 2-1}$ so $f_{n+1} \geq 2^{(n-1) / 2}$

Therefore: if Euclid's Algorithm takes n steps
for $\operatorname{gcd}(a, b)$ with $a \geq b>0$
then $a \geq 2^{(n-1) / 2}$
so $(n-1) / 2 \leq \log _{2} a$ or $n \leq 1+2 \log _{2} a$
i.e., \# of steps $\leq 1+$ twice the \# of bits in a.

Last time: Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a \geq b>0$. Then, $a \geq f_{n+1}$.

An informal way to get the idea: Consider an n step gcd calculation starting with $r_{n+1}=a$ and $r_{n}=b$:

$$
\begin{aligned}
r_{n+1} & =q_{n} r_{n}+r_{n-1} \\
r_{n} & =q_{n-1} r_{n-1}+r_{n-2} \\
& \cdots \\
r_{3} & =q_{2} r_{2}+r_{1} \\
r_{2} & =q_{1} r_{1}
\end{aligned}
$$

For all $k \geq 2, r_{k-1}=r_{k+1} \bmod r_{k}$

Now $r_{1} \geq 1$ and each q_{k} must be ≥ 1. If we replace all the q_{k} 's by 1 and replace r_{1} by 1 , we can only reduce the r_{k} 's. After that reduction, $r_{k}=f_{k}$ for every k.

Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a \geq b>0$. Then, $a \geq f_{n+1}$.

We go by strong induction on n.
Let $P(n)$ be " $\operatorname{gcd}(a, b)$ with $a \geq b>0$ takes n steps $\rightarrow a \geq f_{n+1}$ " for all $n \geq 1$.
Base Case: $\mathrm{n}=1$ Suppose Euclid's Algorithm with $\mathrm{a} \geq \mathrm{b}>0$ takes 1 step. By assumption, $a \geq b \geq 1=f_{2}$ so $P(1)$ holds.

Induction Hypothesis: Suppose that for some integer $\mathrm{k} \geq 1, \mathrm{P}(\mathrm{j})$ is true for all integers j s.t. $1 \leq \mathrm{j} \leq \mathrm{k}$

Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a \geq b>0$. Then, $a \geq f_{n+1}$.

We go by strong induction on n.
Let $P(n)$ be " $\operatorname{gcd}(a, b)$ with $a \geq b>0$ takes n steps $\rightarrow a \geq f_{n+1}$ " for all $n \geq 1$.
Base Case: $n=1$ Suppose Euclid's Algorithm with $a \geq b>0$ takes 1 step. By assumption, $a \geq b \geq 1=f_{2}$ so $P(1)$ holds.

Induction Hypothesis: Suppose that for some integer $\mathrm{k} \geq 1, \mathrm{P}(\mathrm{j})$ is true for all integers j s.t. $1 \leq \mathrm{j} \leq \mathrm{k}$

Inductive Step: We want to show: if $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ with $\mathrm{a} \geq \mathrm{b}>0$ takes $\mathrm{k}+1$ steps, then $a \geq f_{k+2}$.

Running time of Euclid's algorithm

Induction Hypothesis: Suppose that for some integer $\mathrm{k} \geq 1, \mathrm{P}(\mathrm{j})$ is true for all integers j s.t. $1 \leq \mathrm{j} \leq \mathrm{k}$
Inductive Step: Goal: if $\operatorname{gcd}(a, b)$ with $a \geq b>0$ takes $k+1$ steps, then $a \geq f_{k+2}$.

Now if $k+1=2$, then Euclid's algorithm on a and b can be written as

$$
\begin{aligned}
a & =q_{2} b+r_{1} \\
b & =q_{1} r_{1} \\
\text { and } r_{1} & >0 .
\end{aligned}
$$

Also, since $a \geq b>0$ we must have $q_{2} \geq 1$ and $b \geq 1$.
So $a=q_{2} b+r_{1} \geq b+r_{1} \geq 1+1=2=f_{3}=f_{k+2}$ as required.

Running time of Euclid's algorithm

Induction Hypothesis: Suppose that for some integer $\mathrm{k} \geq 1, \mathrm{P}(\mathrm{j})$ is true for all integers j s.t. $1 \leq j \leq k$
Inductive Step: Goal: if $\operatorname{gcd}(a, b)$ with $a \geq b>0$ takes $k+1$ steps, then $a \geq f_{k+2}$.

Next suppose that $k+1 \geq 3$ so for the first 3 steps of Euclid's algorithm on a and b we have

$$
\begin{aligned}
& a=q_{k+1} b+r_{k} \\
& b=q_{k} r_{k}+r_{k-1} \\
& r_{k}=q_{k-1} r_{k-1}+r_{k-2}
\end{aligned}
$$

and there are $k-2$ more steps after this.

Running time of Euclid's algorithm

Induction Hypothesis: Suppose that for some integer $\mathrm{k} \geq 1, \mathrm{P}(\mathrm{j})$ is true for all integers j s.t. $1 \leq j \leq k$
Inductive Step: Goal: if $\operatorname{gcd}(a, b)$ with $a \geq b>0$ takes $k+1$ steps, then $a \geq f_{k+2}$.

Next suppose that $k+1 \geq 3$ so for the first 3 steps of Euclid's algorithm on a and b we have

$$
\begin{aligned}
& a=q_{k+1} b+r_{k} \\
& b=q_{k} r_{k}+r_{k-1} \\
& r_{k}=q_{k-1} r_{k-1}+r_{k-2}
\end{aligned}
$$

and there are $k-2$ more steps after this. Note that this means that the $\operatorname{gcd}\left(b, r_{k}\right)$ takes k steps and $\operatorname{gcd}\left(r_{k}, r_{k-1}\right)$ takes $k-1$ steps.

So since $k, k-1 \geq 1$ by the IH we have $b \geq f_{k+1}$ and $r_{k} \geq f_{k}$.

Running time of Euclid's algorithm

Induction Hypothesis: Suppose that for some integer $\mathrm{k} \geq 1, \mathrm{P}(\mathrm{j})$ is true for all integers j s.t. $1 \leq j \leq k$
Inductive Step: Goal: if $\operatorname{gcd}(a, b)$ with $a \geq b>0$ takes $k+1$ steps, then $a \geq f_{k+2}$.

Next suppose that $k+1 \geq 3$ so for the first 3 steps of Euclid's algorithm on a and b we have

$$
\begin{aligned}
& a=q_{k+1} b+r_{k} \\
& b=q_{k} r_{k}+r_{k-1} \\
& r_{k}=q_{k-1} r_{k-1}+r_{k-2}
\end{aligned}
$$

and there are k - 2 more steps after this. Note that this means that the $\operatorname{gcd}\left(b, r_{k}\right)$ takes k steps and $\operatorname{gcd}\left(r_{k}, r_{k-1}\right)$ takes $k-1$ steps.

So since $k, k-1 \geq 1$ by the IH we have $b \geq f_{k+1}$ and $r_{k} \geq f_{k}$.
Also, since $a \geq b$ we must have $q_{k+1} \geq 1$.
So $a=q_{k+1} b+r_{k} \geq b+r_{k} \geq f_{k+1}+f_{k}=f_{k+2}$ as required.

Recursive Definitions: Data

Recursive Definitions of Sets

Natural numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+1 \in S$

Even numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+2 \in S$

Recursive Definition of Sets

Recursive definition of set S

- Basis Step: $0 \in S$
- Recursive Step: If $x \in S$, then $x+2 \in S$
- Exclusion Rule: Every element in S follows from the basis step and a finite number of recursive steps.

We need the exclusion rule because otherwise $\mathrm{S}=\mathbb{N}$ would satisfy the other two parts. However, we won't always write it down on these slides.

Recursive Definitions of Sets

Natural numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+1 \in S$

Even numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+2 \in S$

Powers of 3:
Basis: $1 \in S$
Recursive: If $x \in S$, then $3 x \in S$.
Basis: $\quad(0,0) \in S,(1,1) \in S$
Recursive: If $(n-1, x) \in S$ and $(n, y) \in S$, then $(n+1, x+y) \in S$.

Recursive Definitions of Sets

Natural numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+1 \in S$

Even numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+2 \in S$

Powers of 3:
Basis: $1 \in S$
Recursive: If $x \in S$, then $3 x \in S$.
Basis:
$(0,0) \in S,(1,1) \in S$
Recursive: If $(n-1, x) \in S$ and $(n, y) \in S$,
Fibonacci numbers then $(n+1, x+y) \in S$.

Strings

- An alphabet Σ is any finite set of characters
- The set Σ^{*} of strings over the alphabet Σ is defined by
- Basis: $\varepsilon \in \Sigma^{*}$ (ε is the empty string $w /$ no chars)
- Recursive: if $w \in \Sigma^{\star}, a \in \Sigma$, then $w a \in \Sigma^{*}$

Palindromes

Palindromes are strings that are the same backwards and forwards

Basis:

ε is a palindrome and any $a \in \Sigma$ is a palindrome

Recursive step:
If p is a palindrome, then apa is a palindrome for every $a \in \Sigma$

All Binary Strings with no 1's before 0's

All Binary Strings with no 1's before 0's

Basis:
$\varepsilon \in S$
Recursive:
If $x \in S$, then $0 x \in S$
If $x \in S$, then $x 1 \in S$

Functions on Recursively Defined Sets (on Σ^{*})

Length:

$$
\begin{aligned}
& \operatorname{len}(\varepsilon)=0 \\
& \operatorname{len}(w a)=1+\operatorname{len}(w) \text { for } w \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Concatenation:

$$
\begin{aligned}
& x \bullet \varepsilon=x \text { for } x \in \Sigma^{*} \\
& x \bullet w a=(x \bullet w) \text { for } x \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Reversal:

$$
\begin{aligned}
& \varepsilon^{R}=\varepsilon \\
& (w a)^{R}=a \cdot w^{R} \text { for } w \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Number of c's in a string:

$$
\begin{aligned}
& \#_{\mathrm{c}}(\varepsilon)=0 \\
& \#_{\mathrm{c}}(w c)=\#_{\mathrm{c}}(w)+1 \text { for } w \in \Sigma^{*} \\
& \#_{\mathrm{c}}(w a)=\#_{c}(w) \text { for } w \in \Sigma^{*}, a \in \Sigma, a \neq c
\end{aligned}
$$

- Basis:
- is a rooted binary tree

Rooted Binary Trees

- Basis:
- is a rooted binary tree
- Recursive step:

Rooted Binary Trees in Java

public static class BinaryTree \{ static BinaryTree LEAF = ...; public BinaryTree(BinaryTree T1, BinaryTree T2) \{
\}
\}
Create a binary tree with BinaryTree. LEAF or new BinaryTree(T1, T2)

Defining Functions on Rooted Binary Trees

- size(\cdot •) $=1$
- $\operatorname{size}(\underset{\sim}{\sim}$
- height(\cdot) = 0
- height $(\underset{\sim}{\text { and }}$

Functions on Rooted Binary Trees in Java

- $\operatorname{size}(\cdot)=1$
- size (

public int size(BinaryTree T) \{ if ($\mathrm{T}==$ BinaryTree.LEAF) \{ natural into Java functions return 1;
\} else \{ return 1 + size(T.left()) + size(T.right()); \}
$\}$

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:
Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:
Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step. Prove that $P(w)$ holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

