
CSE 311: Foundations of Computing

Lecture 17: Recursively Defined Sets &
Structural Induction

Midterm

• Wednesday in class

• Covers material up to end of ordinary induction

• Closed book, closed notes
– will include reference sheets that seem helpful

• No calculators
– arithmetic is intended to be straightforward

Midterm

• 5 problems covering:
– Logic / English translation
– Boolean circuits, algebra, and normal forms
– Solving modular equations
– Induction
– Set theory
– English proofs

Last time: Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0. Then, 𝑎 ≥ 𝑓./0.

Why does this help us bound the running time of Euclid’s
Algorithm?

We already proved that 𝑓. ≥ 2 ⁄. 3 4 0 so 𝑓./0 ≥ 2 ⁄(.40) 3

Therefore: if Euclid’s Algorithm takes 𝑛 steps
for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0
then 𝑎 ≥ 2 ⁄(.40) 3

so (𝑛 − 1)/2 ≤ log3 𝑎 or 𝑛 ≤ 1 + 2 log3 𝑎
i.e., # of steps ≤ 1 + twice the # of bits in 𝑎.

Last time: Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0. Then, 𝑎 ≥ 𝑓./0.

An informal way to get the idea: Consider an n step gcd
calculation starting with rn+1=a and rn=b:

rn+1 = qnrn + rn-1

rn = qn-1rn-1 + rn-2
…

r3 = q2r2 + r1
r2 = q1r1

Now r1 ≥ 1 and each qk must be ≥ 1. If we replace all the
qK’s by 1 and replace r1 by 1 , we can only reduce the rk’s.
After that reduction, rk=fk for every k.

For all k ≥ 2, rk-1= rk+1 mod rk

Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0. Then, 𝑎 ≥ 𝑓./0.

We go by strong induction on n.
Let P(n) be “gcd(a,b) with a ≥ b>0 takes n steps → a ≥ fn+1” for all n ≥ 1.

Base Case: n=1 Suppose Euclid’s Algorithm with a ≥ b > 0 takes 1 step.
By assumption, a ≥ b ≥ 1 = f2 so P(1) holds.

Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true
for all integers j s.t. 1 ≤ j ≤ k

Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0. Then, 𝑎 ≥ 𝑓./0.

We go by strong induction on n.
Let P(n) be “gcd(a,b) with a ≥ b>0 takes n steps → a ≥ fn+1” for all n ≥ 1.

Base Case: n=1 Suppose Euclid’s Algorithm with a ≥ b > 0 takes 1 step.
By assumption, a ≥ b ≥ 1 = f2 so P(1) holds.

Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true
for all integers j s.t. 1 ≤ j ≤ k

Inductive Step: We want to show: if gcd(a,b) with a ≥ b > 0 takes k+1
steps, then a ≥ fk+2.

Running time of Euclid’s algorithm
Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true

for all integers j s.t. 1 ≤ j ≤ k
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Now if k+1=2, then Euclid’s algorithm on a and b can be written as
a = q2b + r1
b = q1r1

and r1 > 0.

Also, since a ≥ b > 0 we must have q2 ≥ 1 and b ≥ 1.

So a = q2b + r1 ≥ b + r1 ≥ 1+1 = 2 = f3 = fk+2 as required.

Running time of Euclid’s algorithm
Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true

for all integers j s.t. 1 ≤ j ≤ k
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Next suppose that k+1 ≥ 3 so for the first 3 steps of Euclid’s
algorithm on a and b we have

a = qk+1b + rk
b = qk rk + rk-1
rk = qk-1rk-1 + rk-2

and there are k-2 more steps after this.

Running time of Euclid’s algorithm
Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true

for all integers j s.t. 1 ≤ j ≤ k
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Next suppose that k+1 ≥ 3 so for the first 3 steps of Euclid’s
algorithm on a and b we have

a = qk+1b + rk
b = qk rk + rk-1
rk = qk-1rk-1 + rk-2

and there are k-2 more steps after this. Note that this means that
the gcd(b, rk) takes k steps and gcd(rk, rk-1) takes k-1 steps.

So since k, k-1 ≥ 1 by the IH we have b ≥ fk+1 and rk ≥ fk.

Running time of Euclid’s algorithm
Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true

for all integers j s.t. 1 ≤ j ≤ k
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Next suppose that k+1 ≥ 3 so for the first 3 steps of Euclid’s
algorithm on a and b we have

a = qk+1b + rk
b = qk rk + rk-1
rk = qk-1rk-1 + rk-2

and there are k-2 more steps after this. Note that this means that
the gcd(b, rk) takes k steps and gcd(rk, rk-1) takes k-1 steps.

So since k, k-1 ≥ 1 by the IH we have b ≥ fk+1 and rk ≥ fk.

Also, since a ≥ b we must have qk+1 ≥ 1.

So a = qk+1b + rk ≥ b + rk ≥ fk+1+ fk= fk+2 as required.

Recursive Definitions:
Data

Recursive Definitions of Sets

Natural numbers
Basis: 0 ∈	S
Recursive: If x ∈	S, then x+1 ∈	S

Even numbers
Basis: 0 ∈	S
Recursive: If x ∈	S, then x+2 ∈	S

Recursive Definition of Sets

Recursive definition of set S
• Basis Step: 0 ∈	S
• Recursive Step: If x ∈	S, then x + 2 ∈	S
• Exclusion Rule: Every element in S follows from

the basis step and a finite number of recursive
steps.

We need the exclusion rule because otherwise
S=ℕ would satisfy the other two parts. However,
we won’t always write it down on these slides.

Recursive Definitions of Sets

Basis: (0, 0) ∈	S, (1, 1) ∈	S
Recursive: If (n-1, x) ∈	S and (n, y) ∈	S,

then (n+1, x + y) ∈	S.

Powers of 3:
Basis: 1 ∈	S
Recursive: If x ∈	S, then 3x ∈	S.

Natural numbers
Basis: 0 ∈	S
Recursive: If x ∈	S, then x+1 ∈	S

Even numbers
Basis: 0 ∈	S
Recursive: If x ∈	S, then x+2 ∈	S

?

Recursive Definitions of Sets

Powers of 3:
Basis: 1 ∈	S
Recursive: If x ∈	S, then 3x ∈	S.

Natural numbers
Basis: 0 ∈	S
Recursive: If x ∈	S, then x+1 ∈	S

Even numbers
Basis: 0 ∈	S
Recursive: If x ∈	S, then x+2 ∈	S

Fibonacci numbers
Basis: (0, 0) ∈	S, (1, 1) ∈	S
Recursive: If (n-1, x) ∈	S and (n, y) ∈	S,

then (n+1, x + y) ∈	S.

Strings

• An alphabet S is any finite set of characters

• The set S* of strings over the alphabet S is
defined by
– Basis: εÎ S∗ (ε is the empty string w/ no chars)
– Recursive: if 𝑤 Î S*, 𝑎 Î S, then 𝑤𝑎 Î S*

Palindromes

Palindromes are strings that are the same
backwards and forwards

Basis:
ε is a palindrome and any 𝑎 ∈ S is a palindrome

Recursive step:
If 𝑝 is a palindrome, then 𝑎𝑝𝑎 is a palindrome for
every 𝑎 ∈ S

All Binary Strings with no 1’s before 0’s

All Binary Strings with no 1’s before 0’s

Basis:
ε ∈	S

Recursive:
If x ∈	S, then 0x ∈	S
If x ∈	S, then x1 ∈	S

Functions on Recursively Defined Sets (on S*)
Length:

len(ε) = 0
len(wa) = 1 + len(w) for w ∈	S*, a ∈	S

Concatenation:
x • ε = x for x ∈ S*

x • wa = (x • w)a for x ∈	S*, a ∈	S

Reversal:
ε R = ε
(wa)R = a • wR for w ∈	S*, a ∈	S

Number of c’s in a string:
#c(ε) = 0
#c(wc) = #c(w) + 1 for w ∈	S*

#c(wa) = #c(w) for w ∈	S*, a ∈	S, a ≠ c

Rooted Binary Trees

• Basis: • is a rooted binary tree

Rooted Binary Trees

• Basis: • is a rooted binary tree
• Recursive step:

If and are rooted binary trees,

then also is a rooted binary tree.

T1 T2

T1 T2

Rooted Binary Trees in Java

public static class BinaryTree {
static BinaryTree LEAF = ...;
public BinaryTree(

BinaryTree T1, BinaryTree T2) {
...

}
}

Create a binary tree with
BinaryTree.LEAF or
new BinaryTree(T1, T2)

Recursively-defined Sets
translate natural into Java classes

Defining Functions on Rooted Binary Trees

• size(•) = 1

• size () = 1 + size(T1) + size(T2)

• height(•) = 0

• height ()=1 + max{height(T1), height(T2)}

T1 T2

T1 T2

Functions on Rooted Binary Trees in Java

public int size(BinaryTree T) {
if (T == BinaryTree.LEAF) {
return 1;

} else {
return 1 + size(T.left()) + size(T.right());

}
}

• size(•) = 1

• size () = 1 + size(T1) + size(T2)
T1 T2

Recursive Functions translate
natural into Java functions

Recursive Sets translate
natural into Java classes

Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case: Show that 𝑃(𝑢) is true for all specific
elements 𝑢 of 𝑆 mentioned in the Basis step

Inductive Hypothesis: Assume that 𝑃 is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the
new elements 𝑤 constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	

Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case: Show that 𝑃(𝑢) is true for all specific
elements 𝑢 of 𝑆 mentioned in the Basis step

Inductive Hypothesis: Assume that 𝑃 is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the
new elements 𝑤 constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	

