
CSE 311: Foundations of Computing

Lecture 16:  Recursion & Strong Induction 
Applications: Fibonacci & Euclid 



Midterm Review

• Review session on Sunday, 3–5pm in Gowen 301
– TAs will be there
– come with questions

• Midterm covers material up through (ordinary) induction

• Practice midterm and problems on web site
– make sure all the concepts we covered are clear
– more information on exam format coming on Monday



Last time: Strong Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
integers 𝑛 ≥ 𝑏 by strong induction.”

2. “Base Case:” Prove 𝑃(𝑏)
3. “Inductive Hypothesis:

Assume that for some arbitrary integer 𝑘 ≥ 𝑏,
𝑃(𝑗) is true for every integer 𝑗 from 𝑏 to 𝑘”   

4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
Use the goal to figure out what you need. 
Make sure you are using I.H. (that 𝑃(𝑏), … , 𝑃(𝑘) are true)
and point out where you are using it.                           
(Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”



Recall: Fundamental Theorem of Arithmetic

Every integer > 1 has a unique prime 
factorization

48 =  2 • 2 • 2 • 2 • 3
591 = 3 • 197
45,523 = 45,523
321,950 = 2 • 5 • 5 • 47 • 137
1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803

We use strong induction to prove that a factorization into
primes exists, but not that it is unique.



1. Let P(n) be “n is a product of primes”.  We will show that P(n) is true 
for all integers n ≥ 2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of (one) prime. 
Therefore P(2) is true.

3. Inductive Hyp:  Suppose that for some arbitrary integer k ≥ 2, 
P(j) is true for every integer j between 2 and k

4. Inductive Step:
Goal:  Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime:  Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b 

where 2 ≤ a, b ≤ k. By our IH, P(a) and P(b) are true so we have
a = p1p2 ⋯ pr and b = q1q2 ⋯ qs

for some primes p1,p2,..., pr, q1,q2,..., qs.
Thus, k+1 = ab = p1p2 ⋯prq1q2 ⋯ qs which is a product of primes. 

Since k ≥ 2, one of these cases must happen and so P(k+1) is true. 
5. Thus P(n) is true for all integers n ≥ 2, by strong induction.

Last time: every integer ≥ 2 is a product of primes.



Strong Induction is particularly useful when...

...we need to analyze methods that on input 𝑘 make 
a recursive call for an input different from 𝑘 − 1.

e.g.:  Recursive Modular Exponentiation:
– For exponent 𝑘 > 0 it made a recursive call with 

exponent j = 𝑘/2 when 𝑘 was even or j = 𝑘 − 1 when 𝑘
was odd.



Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 0) {
return 1;

} else if ((k % 2) == 0) {
long temp = FastModExp(a,k/2,modulus);
return (temp * temp) % modulus;

} else {
long temp = FastModExp(a,k-1,modulus);
return (a * temp) % modulus;

}

}

𝑎67mod 𝑚 = 𝑎7 mod 𝑚 6mod 𝑚
𝑎67<=mod 𝑚 = (𝑎 mod 𝑚) > 𝑎2𝑗 mod 𝑚 mod 𝑚



Strong Induction is particularly useful when...

...we need to analyze methods that on input 𝑘 make 
a recursive call for an input different from 𝑘 − 1.

e.g.:  Recursive Modular Exponentiation:
– For exponent 𝑘 > 0 it made a recursive call with 

exponent j = 𝑘/2 when 𝑘 was even or j = 𝑘 − 1 when 𝑘
was odd.

We won’t analyze this particular method by strong 
induction, but we could.   
However, we will use strong induction to analyze 
other functions with recursive definitions.



Recursive definitions of functions 

• 𝐹(0) = 0; 𝐹(𝑛 + 1) = 𝐹(𝑛) + 1 for all 𝑛 ≥ 0. 

• 𝐺(0) = 1; 𝐺(𝑛 + 1) = 2 > 𝐺(𝑛) for all 𝑛 ≥ 0. 

• 0! = 1; (𝑛 + 1)! = (𝑛 + 1) > 𝑛! for all 𝑛 ≥ 0.

• 𝐻(0) = 1; 𝐻(𝑛 + 1) = 2D E for all 𝑛 ≥ 0.



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.
4. Inductive Step:  

Goal:  Show P(k+1), i.e. show (k+1)! ≤ (k+1)k+1

(k+1)! = (k+1)·k!            by definition of !
≤ (k+1)· kk by the IH
≤ (k+1)· (k+1)k since k ≥ 0
= (k+1)k+1

Therefore P(k+1) is true.
5. Thus P(n) is true for all n ≥ 1, by induction.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



More Recursive Definitions

Suppose that ℎ: ℕ → ℝ.  

Then we have familiar summation notation: 
∑MNO
O ℎ 𝑖 = ℎ(0)

∑MNO
E<= ℎ 𝑖 = ℎ 𝑛 + 1 + ∑MNO

E ℎ 𝑖 for 𝑛 ≥ 0

There is also product notation:  
∏MNO
O ℎ 𝑖 = ℎ(0)

∏MNO
E<= ℎ 𝑖 = ℎ(𝑛 + 1) > ∏MNO

E ℎ 𝑖 for 𝑛 ≥ 0



Fibonacci Numbers

𝑓O = 0
𝑓= = 1
𝑓E = 𝑓ES= + 𝑓ES6 for all 𝑛 ≥ 2



Fibonacci Numbers

𝑓O = 0
𝑓= = 1
𝑓E = 𝑓ES= + 𝑓ES6 for all 𝑛 ≥ 2

𝑓E mi  ≈  𝑓E<= km



Bounding Fibonacci I:  𝑓E < 2E for all 𝑛 ≥ 0

1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 
integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, P(j) is true for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≤ 2k+1

Case k+1 = 1:  Then f1 = 1 ≤ 21 so P(k+1) is true here.
Case k+1 ≥ 2:  Then fk+1 = fk +  fk-1 by definition

≤ 2k + 2k-1 by the IH
≤ 2k + 2k = 2·2k  = 2k+1

so P(k+1) is true in this case.
5.    Therefore by strong induction, fn ≤ 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏S𝟏 + 𝒇𝒏S𝟐 for all 𝒏 ≥ 𝟐
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Bounding Fibonacci I:  𝑓E < 2E for all 𝑛 ≥ 0

1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 
integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.
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< 2k + 2k = 2·2k  = 2k+1

so P(k+1) is true in this case.
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integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.
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5. Therefore by strong induction, 
fn < 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
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Bounding Fibonacci II:  𝑓E ≥ 2 ⁄E 6 S = for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k+1 = 3:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k+1 ≥ 4:    fk+1 = fk +  fk-1 by definition
≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2                  
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
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𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
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No need for cases for the definition here:
fk+1 = fk + fk-1  since k+1 ≥ 2

Now just want to apply the IH to get P(k) and P(k-1)
Problem:  Though we can get P(k) since k ≥ 2,

k-1 may only be 1 so we can’t conclude P(k-1)
Solution: Separate cases for when k-1=1 (or k+1=3).
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2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k = 2:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k ≥ 3:   fk+1 = fk +  fk-1 by definition
≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2      
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏S𝟏 + 𝒇𝒏S𝟐 for all 𝒏 ≥ 𝟐
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Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓E<=.



Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓E<=.

Why does this help us bound the running time of Euclid’s 
Algorithm?

We already proved that 𝑓E ≥ 2 ⁄E 6 S = so 𝑓E<= ≥ 2 ⁄(ES=) 6

Therefore: if Euclid’s Algorithm takes 𝑛 steps
for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0
then 𝑎 ≥ 2 ⁄(ES=) 6

so (𝑛 − 1)/2 ≤ log6 𝑎 or 𝑛 ≤ 1 + 2 log6 𝑎
i.e., # of steps ≤ 1 + twice the # of bits in 𝑎.



Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓E<=.

An informal way to get the idea: Consider an n step gcd
calculation starting with rn+1=a and rn=b:

rn+1 =   qnrn +  rn-1

rn = qn-1rn-1 + rn-2
…

r3 =   q2r2 + r1
r2 =   q1r1

Now r1 ≥ 1 and each qk must be ≥ 1.    If we replace all the
qK’s by 1 and replace r1 by 1 , we can only reduce the rk’s.  
After that reduction, rk=fk for every k.

For all k ≥ 2, rk-1= rk+1 mod rk



Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓E<=.

We go by strong induction on n.  
Let P(n) be “gcd(a,b) with a ≥ b>0 takes n steps → a ≥ fn+1” for all n ≥ 1.  

Base Case: n=1   Suppose Euclid’s Algorithm with a ≥ b > 0  takes 1 step. 
By assumption, a ≥ b ≥ 1 = f2 so P(1) holds.

Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 
for all integers j s.t. 1 ≤ j ≤ k



Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓E<=.

We go by strong induction on n.  
Let P(n) be “gcd(a,b) with a ≥ b>0 takes n steps → a ≥ fn+1” for all n ≥ 1.  

Base Case: n=1   Suppose Euclid’s Algorithm with a ≥ b > 0  takes 1 step. 
By assumption, a ≥ b ≥ 1 = f2 so P(1) holds.

Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 
for all integers j s.t. 1 ≤ j ≤ k

Inductive Step: We want to show: if gcd(a,b) with a ≥ b > 0 takes k+1 
steps, then a ≥ fk+2.



Running time of Euclid’s algorithm
Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k 
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Now if k+1=2, then Euclid’s algorithm on a and b can be written as 
a = q2b  + r1 
b = q1r1

and r1 > 0.

Also, since a ≥ b > 0 we must have q2 ≥ 1 and b ≥ 1. 

So a = q2b + r1 ≥ b + r1 ≥ 1+1 = 2 = f3 = fk+2 as required.



Running time of Euclid’s algorithm
Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k 
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Next suppose that k+1 ≥ 3 so for the first 3 steps of Euclid’s 
algorithm on a and b we have

a = qk+1b + rk
b  = qk rk + rk-1
rk = qk-1rk-1 + rk-2

and there are k-2 more steps after this.



Running time of Euclid’s algorithm
Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k 
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Next suppose that k+1 ≥ 3 so for the first 3 steps of Euclid’s 
algorithm on a and b we have

a = qk+1b + rk
b  = qk rk + rk-1
rk = qk-1rk-1 + rk-2

and there are k-2 more steps after this.   Note that this means that 
the gcd(b, rk) takes k steps and gcd(rk, rk-1) takes k-1 steps.

So since k, k-1 ≥ 1 by the IH we have b ≥ fk+1 and rk ≥ fk.



Running time of Euclid’s algorithm
Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k 
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Next suppose that k+1 ≥ 3 so for the first 3 steps of Euclid’s 
algorithm on a and b we have

a = qk+1b + rk
b  = qk rk + rk-1
rk = qk-1rk-1 + rk-2

and there are k-2 more steps after this.   Note that this means that 
the gcd(b, rk) takes k steps and gcd(rk, rk-1) takes k-1 steps.

So since k, k-1 ≥ 1 by the IH we have b ≥ fk+1 and rk ≥ fk.

Also, since a ≥ b we must have qk+1 ≥ 1. 

So a = qk+1b + rk ≥ b + rk ≥ fk+1+ fk= fk+2 as required.


