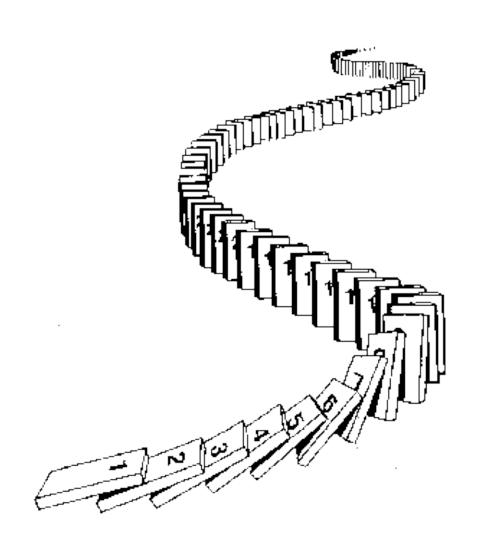
CSE 311: Foundations of Computing

Lecture 14: Induction



Modular Exponentiation mod 7

Х	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

а	a ¹	a ²	a ³	a ⁴	a ⁵	a ⁶
1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1

Exponentiation

• Compute 78365⁸¹⁴⁵³

• Compute 78365⁸¹⁴⁵³ mod 104729

- Output is small
 - need to keep intermediate results small

Repeated Squaring - small and fast

Since $a \mod m \equiv a \pmod m$ and $b \mod m \equiv b \pmod m$ we have $ab \mod m = (a \mod m)(b \mod m) \mod m$

```
So a^2 \mod m = (a \mod m)^2 \mod m

and a^4 \mod m = (a^2 \mod m)^2 \mod m

and a^8 \mod m = (a^4 \mod m)^2 \mod m

and a^{16} \mod m = (a^8 \mod m)^2 \mod m

and a^{32} \mod m = (a^{16} \mod m)^2 \mod m
```

Can compute $a^k \mod m$ for $k = 2^i$ in only i steps What if k is not a power of 2?

Fast Exponentiation Algorithm

81453 in binary is 10011111000101101

```
81453 = 2^{16} + 2^{13} + 2^{12} + 2^{11} + 2^{10} + 2^{9} + 2^{5} + 2^{3} + 2^{2} + 2^{0}
    a^{81453} = a^{2^{16}} \cdot a^{2^{13}} \cdot a^{2^{12}} \cdot a^{2^{11}} \cdot a^{2^{10}} \cdot a^{2^9} \cdot a^{2^5} \cdot a^{2^3} \cdot a^{2^2} \cdot a^{2^0}
 a^{81453} \mod m =
(...((((((a<sup>2<sup>16</sup></sup> mod m
a<sup>2<sup>13</sup></sup> mod m) mod m
                a<sup>212</sup> mod m) mod m
                    a<sup>211</sup> mod m) mod m
                       a<sup>210</sup> mod m) mod m
                           a<sup>29</sup> mod m) mod m
                               a<sup>25</sup> mod m) mod m
                                    a<sup>23</sup> mod m) mod m
                                         a<sup>22</sup> mod m) mod m
                                             a<sup>20</sup> mod m) mod m
```

Uses only 16 + 9 = 25multiplications

The fast exponentiation algorithm computes

 $a^k \mod m$ using $\leq 2 \log k$ multiplications $\mod m$

Fast Exponentiation: $a^k \mod m$ for all k

Another way....

```
a^{2j} \operatorname{mod} m = (a^{j} \operatorname{mod} m)^{2} \operatorname{mod} ma^{2j+1} \operatorname{mod} m = ((a \operatorname{mod} m) \cdot (a^{2j} \operatorname{mod} m)) \operatorname{mod} m
```

Fast Exponentiation

```
public static int FastModExp(int a, int k, int modulus) {
    if (k == 0) {
        return 1;
    } else if ((k % 2) == 0) {
        long temp = FastModExp(a,k/2,modulus);
        return (temp * temp) % modulus;
    }
} else {
        long temp = FastModExp(a,k-1,modulus);
        return (a * temp) % modulus;
}
```

$$a^{2j} \operatorname{mod} m = (a^{j} \operatorname{mod} m)^{2} \operatorname{mod} m$$

$$a^{2j+1} \operatorname{mod} m = ((a \operatorname{mod} m) \cdot (a^{2j} \operatorname{mod} m)) \operatorname{mod} m$$

Using Fast Modular Exponentiation

 Your e-commerce web transactions use SSL (Secure Socket Layer) based on RSA encryption

RSA

- Vendor chooses random 512-bit or 1024-bit primes p, q and 512/1024-bit exponent e. Computes $m = p \cdot q$
- Vendor broadcasts (m, e)
- To send a to vendor, you compute $C = a^e \mod m$ using fast modular exponentiation and send C to the vendor.
- Using secret p, q the vendor computes d that is the multiplicative inverse of e mod (p-1)(q-1).
- Vendor computes $C^d \mod m$ using fast modular exponentiation.
- Fact: $a = C^d \mod m$ for 0 < a < m unless p|a or q|a

More Logic Induction

Mathematical Induction

Method for proving statements about all natural numbers

- A new logical inference rule!
 - It only applies over the natural numbers
 - The idea is to use the special structure of the naturals to prove things more easily
- Particularly useful for reasoning about programs!

Prove $\forall a, b, m > 0 \ \forall \ k \in \mathbb{N} \ (a \equiv b \pmod{m}) \rightarrow a^k \equiv b^k \pmod{m})$

Let $a, b, m > 0 \in \mathbb{Z}$ be arbitrary. Let $k \in \mathbb{N}$ be arbitrary. Suppose that $a \equiv b \pmod{m}$.

We know $(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^2 \equiv b^2 \pmod{m}$ by multiplying congruences. So, applying this repeatedly, we have:

$$(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^2 \equiv b^2 \pmod{m}$$
$$(a^2 \equiv b^2 \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^3 \equiv b^3 \pmod{m}$$

$$\left(a^{k-1} \equiv b^{k-1} \pmod{m} \land a \equiv b \pmod{m}\right) \to a^k \equiv b^k \pmod{m}$$

The "..."s is a problem! We don't have a proof rule that allows us to say "do this over and over".

But there such a property of the natural numbers!

Domain: Natural Numbers

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

Induction Is A Rule of Inference

Domain: Natural Numbers

$$P(0)$$

$$\forall k \ (P(k) \to P(k+1))$$

$$\therefore \forall n \ P(n)$$

How do the givens prove P(5)?

Induction Is A Rule of Inference

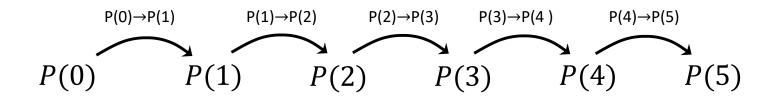
Domain: Natural Numbers

$$P(0)$$

$$\forall k \ (P(k) \to P(k+1))$$

$$\therefore \forall n \ P(n)$$

How do the givens prove P(5)?



First, we have P(0).

Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(0) \rightarrow P(1)$.

Since P(0) is true and $P(0) \rightarrow P(1)$, by Modus Ponens, P(1) is true.

Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(1) \rightarrow P(2)$.

Since P(1) is true and $P(1) \rightarrow P(2)$, by Modus Ponens, P(2) is true.

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \ \forall n \ P(n)$$

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \ \forall n \ P(n)$$

1. Prove P(0)

- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. \forall n P(n)

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \ \forall n \ P(n)$$

- 1. Prove P(0)
- 2. Let k be an arbitrary integer ≥ 0

- 3. $P(k) \rightarrow P(k+1)$
- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. \forall n P(n)

Intro ∀: 2, 3

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \ \forall n \ P(n)$$

- 1. Prove P(0)
- 2. Let k be an arbitrary integer ≥ 0

3.2. ...

3.3. P(k+1)

3.
$$P(k) \rightarrow P(k+1)$$

4. $\forall k (P(k) \rightarrow P(k+1))$

5. \forall n P(n)

Assumption

Direct Proof Rule

Intro \forall : 2, 3

Translating to an English Proof

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

1. Prove P(0)

Base Case

2. Let k be an arbitrary integer ≥ 03.1. Suppose that P(k) is true

Inductive Hypothesis

3.2. ...

Inductive

3.3. Prove P(k+1) is true

Step

3. $P(k) \rightarrow P(k+1)$

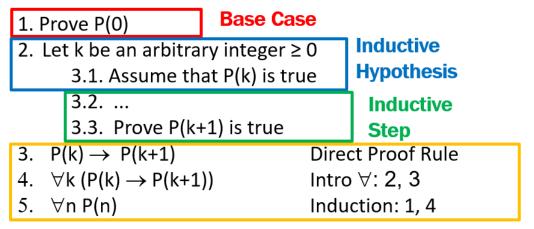
Direct Proof Rule

4. $\forall k (P(k) \rightarrow P(k+1))$

Intro \forall : 2, 3

5. $\forall n P(n)$

Translating To An English Proof



Conclusion

Induction Proof Template

```
[...Define\ P(n)...]
We will show that P(n) is true for every n\in\mathbb{N} by Induction.
Base Case: [...proof\ of\ P(0)\ here...]
Induction Hypothesis:
Suppose that P(k) is true for an arbitrary k\in\mathbb{N}.
Induction Step:
[...proof\ of\ P(k+1)\ here...]
The\ proof\ of\ P(k+1)\ must\ invoke\ the\ IH\ somewhere.
So, the claim is true by induction.
```

Inductive Proofs In 5 Easy Steps

Proof:

- 1. "Let P(n) be... . We will show that P(n) is true for every $n \ge 0$ by Induction."
- **2.** "Base Case:" Prove P(0)
- 3. "Inductive Hypothesis: Suppose P(k) is true for an arbitrary integer $k \geq 0$ "
- 4. "Inductive Step:" Prove that P(k + 1) is true. Use the goal to figure out what you need.
 - Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1)!!)
- 5. "Conclusion: Result follows by induction"

What is $1 + 2 + 4 + ... + 2^n$?

•
$$1 + 2 = 3$$

$$\bullet$$
 1 + 2 + 4 = 7

$$\bullet$$
 1 + 2 + 4 + 8 = 15

$$\bullet$$
 1 + 2 + 4 + 8 + 16 = 31

It sure looks like this sum is $2^{n+1} - 1$

How can we prove it?

We could prove it for n=1, n=2, n=3, ... but that would literally take forever.

Good that we have induction!

Prove
$$1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$$

1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} - 1$ ". We will show P(n) is true for all natural numbers by induction.

- **1.** Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.

I.e, suppose $1 + 2 + ... + 2^k = 2^{k+1} - 1$.

- **1.** Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$

- **1.** Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

$$1 + 2 + ... + 2^k = 2^{k+1} - 1$$
 by IH

Adding 2^{k+1} to both sides, we get:

$$1 + 2 + ... + 2^{k} + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1$$

Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

So, we have $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly P(k+1).

- **1.** Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

We can calculate

$$1 + 2 + ... + 2^{k} + 2^{k+1} = (1+2+... + 2^{k}) + 2^{k+1}$$

= $(2^{k+1} - 1) + 2^{k+1}$ by the IH
= $2(2^{k+1}) - 1$
= $2^{k+2} - 1$,

which is exactly P(k+1).

Alternative way of writing the inductive step

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

We can calculate

$$1 + 2 + ... + 2^{k} + 2^{k+1} = (1+2+... + 2^{k}) + 2^{k+1}$$

= $(2^{k+1} - 1) + 2^{k+1}$ by the IH
= $2(2^{k+1}) - 1$
= $2^{k+2} - 1$,

which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

Prove
$$1 + 2 + 3 + ... + n = n(n+1)/2$$

1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.

I.e., suppose 1 + 2 + ... + k = k(k+1)/2

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show 1 + 2 + ... + k + (k+1) = (k+1)(k+2)/2

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

$$1 + 2 + ... + k + (k+1) = (1 + 2 + ... + k) + (k+1)$$

= $k(k+1)/2 + (k+1)$ by IH
= $(k+1)(k/2 + 1)$
= $(k+1)(k+2)/2$

So, we have shown 1 + 2 + ... + k + (k+1) = (k+1)(k+2)/2, which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

Another example of a pattern

•
$$2^0 - 1 = 1 - 1 = 0 = 3 \cdot 0$$

•
$$2^2 - 1 = 4 - 1 = 3 = 3 \cdot 1$$

•
$$2^4 - 1 = 16 - 1 = 15 = 3.5$$

•
$$2^6 - 1 = 64 - 1 = 63 = 3 \cdot 21$$

•
$$2^8 - 1 = 256 - 1 = 255 = 3.85$$

• ...

1. Let P(n) be "3 | $(2^{2n}-1)$ ". We will show P(n) is true for all natural numbers by induction.

- 1. Let P(n) be "3 | $(2^{2n}-1)$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^{2\cdot 0}-1=1-1=0=3\cdot 0$ Therefore P(0) is true

- 1. Let P(n) be "3 | $(2^{2n}-1)$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^{2\cdot 0}-1=1-1=0=3\cdot 0$ Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.

I.e., suppose that $3 | (2^{2k} - 1)$

- 1. Let P(n) be "3 | $(2^{2n}-1)$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^{2\cdot 0}-1=1-1=0=3\cdot 0$ Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show $3 \mid (2^{2(k+1)}-1)$

Prove: $3 \mid (2^{2n} - 1)$ for all $n \ge 0$

- 1. Let P(n) be "3 | $(2^{2n}-1)$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^{2\cdot 0}-1=1-1=0=3\cdot 0$ Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

By IH,
$$3 \mid (2^{2k} - 1)$$
 so $2^{2k} - 1 = 3j$ for some integer j
So $2^{2(k+1)} - 1 = 2^{2k+2} - 1 = 4(2^{2k}) - 1 = 4(3j+1) - 1$
= $12j+3 = 3(4j+1)$

Therefore $3 \mid (2^{2(k+1)}-1)$ which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.