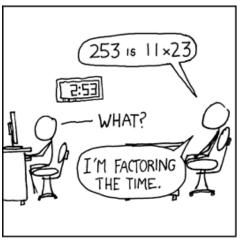
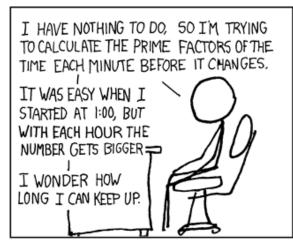
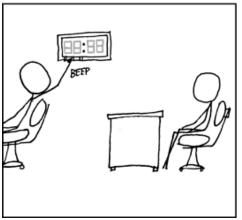
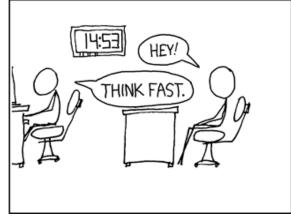
CSE 311: Foundations of Computing

Lecture 12: Primes, GCD





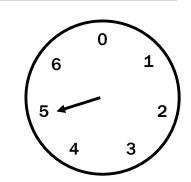




Last Time: Modular Arithmetic

$$(a + b) \mod 7$$

$$(a \times b) \mod 7$$



+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Replace number line with a clock. Taking *m* steps returns back to the same place.

Form of arithmetic using only a finite set of numbers $\{0, 1, 2, 3, ..., m - 1\}$

Unclear (so far) that modular arithmetic has the same properties as ordinary arithmetic....

Last Time: Modular Arithmetic

<u>Idea</u>: Find replacement for "=" that works for modular arithmetic

"=" on ordinary numbers allows us to solve problems, e.g.

- add / subtract numbers from both sides of equations
- substitute "=" values in equations

Definition: "a is congruent to b modulo m"

For
$$a, b, m \in \mathbb{Z}$$
 with $m > 0$
 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Equivalently, $a \equiv b \pmod{m}$ iff a = b + km for some $k \in \mathbb{Z}$.

Last Time: Modular Arithmetic

Definition: "a is congruent to b modulo m"

For
$$a, b, m \in \mathbb{Z}$$
 with $m > 0$
 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Equivalently, $a \equiv b \pmod{m}$ iff a = b + km for some $k \in \mathbb{Z}$.

 $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

I.e., a and b are congruent modulo m iff a and b steps go to the same spot on the "clock" with m numbers

Last Time: Modular Arithmetic: Properties

If
$$a \equiv b \pmod{m}$$
 and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$

If
$$a \equiv b \pmod{m}$$
 and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Corollary: If
$$a \equiv b \pmod{m}$$
, then $a + c \equiv b + c \pmod{m}$

```
If a \equiv b \pmod{m} and c \equiv d \pmod{m},
then ac \equiv bd \pmod{m}
```

Corollary:

```
If a \equiv b \pmod{m}, then ac \equiv bc \pmod{m}
```

Last Time: Modular Arithmetic: Properties

If
$$a \equiv b \pmod{m}$$
 and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$

If
$$a \equiv b \pmod{m}$$
, then $a + c \equiv b + c \pmod{m}$

If
$$a \equiv b \pmod{m}$$
, then $ac \equiv bc \pmod{m}$

- "≡" allows us to solve problems in modular arithmetic, e.g.
 - add / subtract numbers from both sides of equations
 - chains of "≡" values shows first and last are "≡"
 - substitute "≡" values in equations (not fully proven yet)

Basic Applications of mod

- Two's Complement
- Hashing
- Pseudo random number generation

n-bit Unsigned Integer Representation

• Represent integer x as sum of powers of 2:

If
$$\sum_{i=0}^{n-1} b_i 2^i$$
 where each $b_i \in \{0,1\}$

then representation is $b_{n-1}...b_2 b_1 b_0$

$$99 = 64 + 32 + 2 + 1$$

$$18 = 16 + 2$$

• For n = 8:

99: 0110 0011

18: 0001 0010

Easy to implement arithmetic $mod 2^n$... just throw away bits n+1 and up

Sign-Magnitude Integer Representation

n-bit signed integers

Suppose that $-2^{n-1} < x < 2^{n-1}$ First bit as the sign, n-1 bits for the value

$$99 = 64 + 32 + 2 + 1$$

 $18 = 16 + 2$

For n = 8:

99: 0110 0011

-18: 1001 0010

Any problems with this representation?

Two's Complement Representation

n bit signed integers, first bit will still be the sign bit

```
Suppose that 0 \le x < 2^{n-1}, x is represented by the binary representation of x. Suppose that 0 \le x \le 2^{n-1}, -x is represented by the binary representation of -x + 2^n
```

Key property: Twos complement representation of any number y is equivalent to $y \mod 2^n$ so arithmetic works $\mod 2^n$

$$99 = 64 + 32 + 2 + 1$$

 $18 = 16 + 2$

For n = 8:

99: 0110 0011

-18: **1110 1110**

Sign-Magnitude vs. Two's Complement

-7 -6 -5 -4 -3 -2 -1 Sign-bit

Two's complement

Two's Complement Representation

- For $0 < x \le 2^{n-1}$, -x is represented by the binary representation of $2^n x$
 - That is, the two's complement representation of any number y has the same value as y modulo 2^n .

Two's Complement Representation

- For $0 < x \le 2^{n-1}$, -x is represented by the binary representation of $2^n x$
 - That is, the two's complement representation of any number y has the same value as y modulo 2^n .

- To compute this: Flip the bits of x then add 1:
 - All 1's string is $2^n 1$, so Flip the bits of $x \equiv \text{replace } x \text{ by } 2^n - 1 - x$ Then add 1 to get $2^n - x$

Hashing

Scenario:

Map a small number of data values from a large domain $\{0, 1, ..., M - 1\}$...

...into a small set of locations $\{0,1,...,n-1\}$ so one can quickly check if some value is present

- $hash(x) = x \mod p$ for p a prime close to n
 - $-\operatorname{or} \operatorname{hash}(x) = (ax + b) \operatorname{mod} p$
- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur

Pseudo-Random Number Generation

Linear Congruential method

$$x_{n+1} = (a x_n + c) \bmod m$$

Choose random x_0 , a, c, m and produce a long sequence of x_n 's

More Number Theory Primes and GCD

Primality

An integer *p* greater than 1 is called *prime* if the only positive factors of *p* are 1 and *p*.

A positive integer that is greater than 1 and is not prime is called *composite*.

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a "unique" prime factorization

```
48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3

591 = 3 \cdot 197

45,523 = 45,523

321,950 = 2 \cdot 5 \cdot 5 \cdot 47 \cdot 137

1,234,567,890 = 2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803
```

Euclid's Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list $p_1, p_2, ..., p_n$.

Euclid's Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list $p_1, p_2, ..., p_n$.

Define the number $P=p_1\cdot p_2\cdot p_3\cdot \cdots \cdot p_n$ and let Q=P+1.

Euclid's Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list $p_1, p_2, ..., p_n$.

Define the number $P = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n$ and let Q = P + 1. (Note that Q > 1.)

Case 1: Q is prime: Then Q is a prime different from all of $p_1, p_2, ..., p_n$ since it is bigger than all of them.

Case 2: Q is not prime: Then Q has some prime factor p (which must be in the list). Therefore p|P and p|Q so p|(Q-P) which means that p|1.

Both cases are contradictions, so the assumption is false (proof by cases).

Famous Algorithmic Problems

- Primality Testing
 - Given an integer n, determine if n is prime
- Factoring
 - Given an integer n, determine the prime factorization of n

Factoring

Factor the following 232 digit number [RSA768]:

Greatest Common Divisor

```
GCD(a, b):
```

Largest integer d such that $d \mid a$ and $d \mid b$

- GCD(100, 125) =
- GCD(17, 49) =
- GCD(11, 66) =
- GCD(13, 0) =
- GCD(180, 252) =

GCD and Factoring

$$a = 2^3 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11 = 46,200$$

$$b = 2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 13 = 204,750$$

$$GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)}$$

Factoring is expensive!

Can we compute GCD(a,b) without factoring?

Useful GCD Fact

```
If a and b are positive integers, then gcd(a,b) = gcd(b, a \mod b)
```

Proof:

By definition of mod, $a = qb + (a \mod b)$ for some integer $q = a \operatorname{div} b$.

Suppose $d \mid a$ and $d \mid b$.

Then a = kd and b = jd for some integers k and j.

Therefore $(a \mod b) = a - qb = kd - qjd = (k - qj)d$. So, $d \mid (a \mod b)$, and since $d \mid b$ we must have $d \mid \gcd(b, a \mod b)$.

Suppose $e \mid b$ and $e \mid (a \mod b)$.

Then b = me and $(a \mod b) = ne$ for some integers m and n.

Therefore $a = qb + (a \bmod b) = qme + ne = (qm + n)e$. So $e \mid a$.

Since they have the same common divisors, $gcd(a, b) = gcd(b, a \mod b)$.

Another simple GCD fact

If a is a positive integer, gcd(a,0) = a.