CSE 311: Foundations of Computing

Lecture 11: Modular Arithmetic and Applications

Last Class: Divisibility

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:

$$
a \mid b \leftrightarrow \exists k \in \mathbb{Z}(b=k a)
$$

Check Your Understanding. Which of the following are true?

Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$ there exist unique integers q, r with $0 \leq r<d$ such that $a=q d+r$.

To put it another way, if we divide d into a, we get a unique quotient $q=a \operatorname{div} d$ and non-negative remainder $r=a \bmod d$

Can then write $a=(a \operatorname{div} d) d+(a \bmod d)$

Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$ there exist unique integers q, r with $0 \leq r<d$ such that $a=q d+r$.

Application: take $\mathrm{d}=\mathbf{2}$...

$$
a=2 q+r \text { with } r \in\{0,1\}
$$

- If $r=0$, then a is even
- If $r=1$, then a is odd

$$
\begin{aligned}
& \operatorname{Even}(x):=\exists y \quad(x=2 y) \\
& \operatorname{Odd}(x):=\exists y \quad(x=2 y+1)
\end{aligned}
$$

Hence, every integer is either even or odd.

Division Theorem

Division Theorem
For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$
there exist unique integers q, r with $0 \leq r<d$ such that $a=q d+r$.

$$
q=a \operatorname{div} d \quad r=a \bmod d
$$

In Java, we have (almost)

$$
\operatorname{div}=" / " \text { and } \bmod =" \% "
$$

Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$ there exist unique integers q, r with $0 \leq r<d$ such that $a=q d+r$.

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
}
Note: \(r \geq 0\) even if \(a<0\). Not quite the same as \(a \% d\).
```


Division Theorem

Division Theorem
For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$
there exist unique integers q, r with $0 \leq r<d$ such that $a=q d+r$.

$$
q=a \operatorname{div} d \quad r=a \bmod d
$$

While div is more familiar, our focus is on mod:

- provides a bound on the size $(0 \leq r<d)$
- need to connect that somehow to arithmetic...

Arithmetic, mod 7

$(a+b) \bmod 7$
$(a \times b) \bmod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Modular Arithmetic

Definition: "a is congruent to b modulo m"
For $a, b, m \in \mathbb{Z}$ with $m>0$

$$
a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
$$

New notion of "sameness" that will help us understand modular arithmetic

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with $m>0$

$$
a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
$$

Check Your Understanding. What do each of these mean? When are they true?
$x \equiv 0(\bmod 2)$
This statement is the same as saying " x is even"; so, any x that is even (including negative even numbers) will work.
$-1 \equiv 19(\bmod 5)$
This statement is true. $19-(-1)=20$ which is divisible by 5
$y \equiv 2(\bmod 7)$
This statement is true for y in $\{\ldots,-12,-5,2,9,16, \ldots\}$. In other words, all y of the form $2+7 k$ for k an integer.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ if and only if $a \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \equiv b(\bmod m)$.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ if and only if $a \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \equiv b(\bmod m)$.
Then, $m \mid(a-b)$ by definition of congruence.
So, $a-b=k m$ for some integer k by definition of divides.
Therefore, $a=b+k m$.
Taking both sides modulo m we get:

$$
a \bmod m=(b+k m) \bmod m=b \bmod m
$$

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$. Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ if and only if $a \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.

Suppose that $a \bmod m=b \bmod m$.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ if and only if $a \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \bmod m=b \bmod m$.
By the division theorem, $a=m q+(a \bmod m)$ and $b=m s+(b \bmod m)$ for some integers q, s.
Then, $a-b=(m q+(a \bmod m))-(m s+(b \bmod m))$
$=m(q-s)+(a \bmod m-b \bmod m)$
$=m(q-s)$ since $a \bmod m=b \bmod m$
Therefore, $m \mid(a-b)$ and so $a \equiv b(\bmod m)$.

The $\bmod m$ function vs the $\equiv(\bmod m)$ predicate

- What we have just shown
- The $\bmod m$ function takes any $a \in \mathbb{Z}$ and maps it to a remainder $a \bmod m \in\{0,1, \ldots, m-1\}$.
- Imagine grouping together all integers that have the same value of the mod m function
That is, the same remainder in $\{0,1, . ., m-1\}$.
- The $\equiv(\bmod m)$ predicate compares $a, b \in \mathbb{Z}$. It is true if and only if the $\bmod m$ function has the same value on a and on b.
That is, a and b are in the same group.

Modular Arithmetic: Basic Property

Let \boldsymbol{m} be a positive integer.
If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and $\boldsymbol{b} \equiv \boldsymbol{c}(\bmod \boldsymbol{m})$, then $a \equiv c(\bmod m)$

Modular Arithmetic: Basic Property

```
Let \(\boldsymbol{m}\) be a positive integer.
If \(\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})\) and \(\boldsymbol{b} \equiv \boldsymbol{c}(\bmod \boldsymbol{m})\), then \(\boldsymbol{a} \equiv \boldsymbol{c}(\bmod \boldsymbol{m})\)
```

Suppose that $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$.
Then, by the previous property, we have $a \bmod m=b \bmod m$ and $b \bmod m=c \bmod m$.

Putting these together, we have $a \bmod m=c \bmod m$, which says that $a \equiv c(\bmod m)$, by definition.

So "三" behaves like "=" in that sense.
And that is not the only similarity...

Modular Arithmetic: Addition Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and
$\boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m})$, then $a+\boldsymbol{c} \equiv \boldsymbol{b}+\boldsymbol{d}(\bmod \boldsymbol{m})$

Modular Arithmetic: Addition Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m})$, then $a+\boldsymbol{c} \equiv \boldsymbol{b}+\boldsymbol{d}(\bmod \boldsymbol{m})$

Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Unrolling definitions gives us some k such that $a-b=k m$, and some j such that $c-d=j m$.

Adding the equations together gives us $(a+c)-(b+d)=m(k+j)$. Now, re-applying the definition of congruence gives us $a+c \equiv b+d(\bmod m)$.

Modular Arithmetic: Multiplication Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m})$, then $\boldsymbol{a} \boldsymbol{c} \equiv \boldsymbol{b d}(\bmod \boldsymbol{m})$

Modular Arithmetic: Multiplication Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m})$, then $\boldsymbol{a} \boldsymbol{c} \equiv \boldsymbol{b d}(\bmod \boldsymbol{m})$

Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Unrolling definitions gives us some k such that $a-b=k m$, and some j such that $c-d=j m$.

Then, $a=k m+b$ and $c=j m+d$. Multiplying both together gives us $a c=(k m+b)(j m+d)=k j m^{2}+k m d+b j m+b d$.

Re-arranging gives us $a c-b d=m(k j m+k d+b j)$. Using the definition of congruence gives us $a c \equiv b d(\bmod m)$.

Modular Arithmetic: Properties

$$
\begin{aligned}
& \text { If } \boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m}) \text { and } \boldsymbol{b} \equiv \boldsymbol{c}(\bmod \boldsymbol{m}), \\
& \text { then } \boldsymbol{a} \equiv \boldsymbol{c}(\bmod \boldsymbol{m})
\end{aligned}
$$

```
If a\equivb}(\boldsymbol{mod}m)\mathrm{ and }\boldsymbol{c}\equiv\boldsymbol{d}(\operatorname{mod}m)
then a+c\equivb+d}(\boldsymbol{mod}m
```

Corollary: If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$, then $\boldsymbol{a}+\boldsymbol{c} \equiv \boldsymbol{b}+\boldsymbol{c}(\bmod \boldsymbol{m})$

$$
\text { If } a \equiv b(\bmod m) \text { and } c \equiv d(\bmod m),
$$ then $\boldsymbol{a c} \equiv \boldsymbol{b} \boldsymbol{d}(\bmod \boldsymbol{m})$

Corollary: If $a \equiv b(\bmod m)$, then $a c \equiv b c(\bmod m)$

Modular Arithmetic：Properties

$$
\begin{aligned}
& \text { If } \boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m}) \text { and } \boldsymbol{b} \equiv \boldsymbol{c}(\bmod \boldsymbol{m}) \\
& \text { then } \boldsymbol{a} \equiv \boldsymbol{c}(\bmod \boldsymbol{m})
\end{aligned}
$$

If $a \equiv b(\bmod \boldsymbol{m})$ ，then $a+c \equiv b+c(\bmod m)$

If $a \equiv b(\bmod \boldsymbol{m})$ ，then $a c \equiv b c(\bmod \boldsymbol{m})$
＂三＂allows us to solve problems in modular arithmetic，e．g．
－add／subtract numbers from both sides of equations

- chains of＂\equiv＂values shows first and last are＂三＂
- substitute＂三＂values in equations（not proven yet）

Example

Let \boldsymbol{n} be an integer.
Prove that $n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$
Let's start by looking a a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv \mathbf{1}(\bmod 4)$
Case 1 (n is even):
Let's start by looking a a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

It looks like

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and } \\
& n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4) .
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv 0(\bmod 4)$ or $\boldsymbol{n}^{2} \equiv \mathbf{1}(\bmod 4)$
Case 1 (n is even):
Suppose n is even.
Let's start by looking a a small example:

Then, $n=2 k$ for some integer k.

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

So, $n^{2}=(2 k)^{2}=4 k^{2}=0+4 k^{2}$.
So, by the definition of congruence,
we have $n^{2} \equiv 0(\bmod 4)$.
It looks like

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and } \\
& n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4) .
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv 0(\bmod 4)$ or $\boldsymbol{n}^{2} \equiv \mathbf{1}(\bmod 4)$
Case 1 (n is even): Done.
Let's start by looking a a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

It looks like

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and } \\
& n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4) .
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv \mathbf{0}(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$
Case 1 (n is even): Done.
Let's start by looking a a small example:
Case 2 (n is odd):
Suppose n is odd.
Then, $n=2 k+1$ for some integer k.

$$
\text { So, } n^{2}=(2 k+1)^{2}
$$

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

$$
\begin{aligned}
& =4 k^{2}+4 k+1 \\
& =4\left(k^{2}+k\right)+1 .
\end{aligned}
$$

It looks like

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and } \\
& n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4) .
\end{aligned}
$$

$$
\text { we have } n^{2} \equiv 1(\bmod 4)
$$

Result follows by proof by cases since n is either even or odd

