CSE 311: Foundations of Computing

Lecture 11: Modular Arithmetic and Applications
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Last Class: Divisibility

Definition: “a divides b”

Fora € 7Z,b € Z with a # O:
a|lbe 3k eZ (b=ka)

\_
Check Your Understanding. Which of the following are true?

51 25 | 5 3|2

5| 1iff 1 =5k 25 | 5iff 5 =25k 5|0iff0=5k 3] 2iff2=3k

@ @ 0|5 2|3

1] 5iff 5=1k 5| 25iff 25 = Bk O|5iff5=0k 2| 3iff3=2k




Division Theorem

Division Theorem

Fora € Z,d € Z withd > 0

there exist unique integers g, rwith0 <r < d
\ such thata = qd + .

J

To put it another way, if we divide d into a, we get a
unique quotient g =a div d
and non-negative remainder |r=a mod d

Can then write a = (adivd) d + (a mod d)



Division Theorem

Division Theorem

Fora € Z,d € Z withd > 0

there exist unique integers g, rwith0 <r < d
\ such thata = qd + .

_/
Application: take d = 2...
a=2q +rwithr € {0,1}
 Ifr=0,thenais even Even(x) := 3y (x=2y)
* Ifr=1,then ais odd Oddix) :=3y (x=2y+1)

Hence, every integer is either even or odd.



Division Theorem

Division Theorem

Fora € Z,d € Z withd > 0
there exist unigue integers g, rwith 0 <r < d
\ such thata = qd + .

qg=adivd r=amod d

In Java, we have (almost)
div=“/" andmod=“%"



Division Theorem

Division Theorem

Fora € Z,d € Z withd > 0
there exist unigue integers g, rwith 0 <r < d
\ such thata = qd + . p

pUbllc class Test2 { ----JGRASP exec: java Test2

public static void main(String args[]) { -1
]"nt a = -3; ----jGRASP: operation complete.
int d = 2; '
System.out.println(a % d);
}
} Note: r = 0 even if a < 0.

Not quite the same as a%d.




Division Theorem

Division Theorem

Fora € Z,d € Z withd > 0
there exist unigue integers g, rwith 0 <r < d
\ such thata = qd + .

J

qg=adivd r=amod d

While div is more familiar, our focus is on mod:
* provides a bound on the size (0 < r < d)
* heed to connect that somehow to arithmetic...



Arithmetic, mod 7

(@a+ b)mod 7
(@ x b) mod 7




Modular Arithmetic

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0
a=b(modm) o m|(a —b)

New notion of “sameness” that will help us
understand modular arithmetic



Modular Arithmetic

~

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0
a=b(modm) o m|(a —b)

\_

Check Your Understanding. What do each of these mean?
When are they true?

X =0 (mod 2)

This statement is the same as saying “x is even”; so, any x that is
even (including negative even numbers) will work.

-1 =19 (mod 5)
This statement is true. 19 - (-1) = 20 which is divisible by 5
y =2 (mod 7)

This statement is true for yin{...,-12,-5, 2, 9, 16, ...}. In other
words, all y of the form 2+7k for k an integer.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then,a = b (mod m) if and only if a mod m = b mod m.

Suppose that a = b (mod m).



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then,a = b (mod m) if and only if a mod m = b mod m.

Suppose that a = b (mod m).
Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.
Taking both sides modulo m we get:
a mod m = (b + km) mod m = b mod m.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then,a = b (mod m) if and only if a mod m = b mod m.

Suppose that a mod m = b mod m.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a = b (mod m) if and only if amod m = b mod m.

Suppose that a mod m = b mod m.
By the division theorem, a = mqg + (a mod m) and
b = ms + (b mod m) for some integers g,s.
Then,a -b = (mg + (a mod m)) - (ms + (b mod m))
= m(q-s) + (a modm- b modm)
= m(q-s)sinceamodm = b modm
Therefore, m |(a — b) andso a = b (mod m).



The mod m function vs the = (mod m) predicate

* What we have just shown

— The mod m function takes any a € Z and maps
it to a remainder a mod m € {0,1,..,m — 1}.

— Imagine grouping together all integers that have
the same value of the mod m function

That is, the same remainder in {0,1,.., m — 1}.

— The = (mod m) predicate compares a,b € Z. It
is true if and only if the mod m function has the
same value on a and on b.

That is, a and b are in the same group.



Modular Arithmetic: Basic Property

Let m be a positive integer.
Ifa = b (modm) and b = ¢ (mod m),
then a = ¢ (mod m)




Modular Arithmetic: Basic Property

Let m be a positive integer.
Ifa = b (modm) and b = ¢ (mod m),
then a = ¢ (mod m)

Suppose that a = b (mod m) and b = ¢ (mod m).
Then, by the previous property, we have
a mod m = b mod m and b mod m = ¢ mod m.

Putting these together, we have a mod m = ¢ mod m,
which says that a = ¢ (mod m), by definition.

“u_u

So “=" behaves like “=" in that sense.
And that is not the only similarity...




Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa = b (mod m) and
¢c = d(modm),thena+c = b+ d (modm)




Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa = b (mod m) and
¢c = d(modm),thena+c = b+ d (modm)

Suppose thata = b (mod m) andc = d (mod m). Unrolling
definitions gives us some k such that a - b = km,
and some j such thatc -d = jm.

Adding the equations together gives us
(a+c)- (b+d) = m(k +j). Now, re-applying the definition
of congruence givesusa + ¢ = b + d (mod m).



Modular Arithmetic: Multiplication Property

Let m be a positive integer. If a = b (mod m) and
¢ =d (mod m), then ac = bd (mod m)




Modular Arithmetic: Multiplication Property

Let m be a positive integer. If a = b (mod m) and
¢ =d (mod m), then ac = bd (mod m)

Suppose that a = b (mod m) and ¢ = d (mod m). Unrolling
definitions gives us some k such that a - b = km,
and some j such thatc -d = jm.

Then,a = km + b and ¢ = jm + d. Multiplying both together
givesus ac = (km+ b)(jm + d) = kjm? + kmd + bjm + bd.

Re-arranging gives us ac - bd = m(kjm + kd + bj).
Using the definition of congruence gives us ac = bd (mod m).



Modular Arithmetic: Properties

Ifa = b (modm) and b = ¢ (mod m),
then a = ¢ (mod m)

Ifa = b (modm) and ¢ = d (mod m),
thena+c¢c = b+ d (modm)

Corollary: [ Ifa = b (mod m),thena+c¢ = b + ¢ (mod m)

Ifa = b (mod m) and ¢ = d (mod m),
then ac = bd (mod m)

Corollary: | Ifa = b (mod m), then ac = bc (mod m)




Modular Arithmetic: Properties

Ifa = b (modm) and b = ¢ (mod m),
then a = ¢ (mod m)

If a

b (mod m),thena+c = b + ¢ (mod m)

If a

b (mod m), then ac = bc (mod m)

“—”

allows us to solve problems in modular arithmetic, e.g.
* add / subtract numbers from both sides of equations
e chains of “="” values shows first and last are “="

. substltute “= " values in equations (not proven yet)



Example

Let n be an integer.
Prove that n? = 0 (mod 4) orn? = 1 (mod 4)

Let’s start by looking a a small example:
02=0 =0 (mod 4)

12=1 =1 (mod 4)
22=4 =0(mod4)
32=9 =1 (mod4)

42 =16=0 (mod 4)




Example

Let n be an integer.
Prove that n? = 0 (mod 4) orn? = 1 (mod 4)

Let’s start by looking a a small example:
02=0 =0 (mod 4)
12=1 =1 (mod 4)
22=4 =0 (mod 4)
32=9 =1 (mod4)
42 =16=0 (mod 4)

Case 1 (nis even):

It looks like
h =0 (mod 2) — n?2 =0 (mod 4), and
n=1(mod2) — n2=1(mod 4).



Example

Let n be an integer.

Prove that n? = 0 (mod 4) or n? = 1 (mod 4)

Let’s start by looking a a small example:
02=0 =0 (mod 4)
12=1 =1 (mod 4)

Case 1 (n is even):
Suppose n is even.

Then, n = 2k for some integer k. 22=4 =0 (mod 4)
So, n?2 = (2k)?= 4k? = 0 + 4k2. 32=9 =1 (mod 4)
So, by the definition of congruence, 42 =16 =0 (mod 4)

we have n? = 0 (mod 4).
It looks like

h =0 (mod?2) — n?2=0(mod4), and
n=1(mod2) — n2=1(mod 4).



Example

Let n be an integer.
Prove that n? = 0 (mod 4) orn? = 1 (mod 4)

Let’s start by looking a a small example:
02=0 =0 (mod 4)
12=1 =1 (mod 4)
22=4 =0 (mod 4)
32=9 =1 (mod4)
42 =16=0 (mod 4)

Case 1 (nis even): Done.

Case 2 (n is odd):

It looks like
h =0 (mod 2) — n?2 =0 (mod 4), and
n=1(mod2) — n2=1(mod 4).



Example

Let n be an integer.

Prove that n? = 0 (mod 4) or n? = 1 (mod 4)

Let’s start by looking a a small example:
02=0 =0 (mod 4)

Case 2 (n is odd): 12=1 =1(mod 4)

Suppose 1 is odd. 22=4 =0(mod 4)

Then, n = 2k + 1 for some integer k. Z; ) 5196 i (1) Emoj j;
So, n?2 = (2k + 1)? =16=0(mo

Case 1 (n is even): Done.

=4k 4+ 4k + 1 It looks like
=4(k*+ k) + 1. n =0 (mod 2) — n? =0 (mod 4), and
So, by definition of congruence, n=1(mod2) — n2=1(mod 4).

we have n? = 1 (mod 4).

Result follows by proof by cases since n is either even or odd



