
CSE 311: Foundations of Computing

Lecture 11:  Modular Arithmetic and Applications



Check Your Understanding.  Which of the following are true?

5 |	1 25 | 5 5 | 0 3 |	2

1 | 5 5 | 25 0 | 5 2 | 3

Last Class: Divisibility

5 | 1 iff 1 = 5k

1 | 5 iff 5 = 1k

25 | 5 iff 5 = 25k

5 | 25 iff 25 = 5k

5 | 0 iff 0 = 5k

0 | 5 iff 5 = 0k

3 | 2 iff 2 = 3k

2 | 3 iff 3 = 2k

For 𝑎 ∈ ℤ, 𝑏 ∈ ℤ with 𝑎 ≠ 0:
𝑎 | 𝑏 ↔ ∃𝑘 ∈ ℤ (𝑏 = 𝑘𝑎)

Definition: “a divides b”



To put it another way, if we divide d into a, we get a 
unique quotient                                                                     
and non-negative remainder

Can then write  𝑎 = 𝑎 div 𝑑 𝑑 + (𝑎 mod 𝑑)

Division Theorem

q = a div d

For 𝑎 ∈ ℤ, 𝑑 ∈ ℤ with 𝑑 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑑
such that 𝑎 = 𝑞𝑑 + 𝑟.

Division Theorem

r = a mod d



Application:  take d = 2...

𝑎 = 2𝑞 + 𝑟 with 𝑟 ∈ {0, 1}

• If r = 0, then a is even
• If r = 1, then a is odd

Hence, every integer is either even or odd.

Division Theorem

For 𝑎 ∈ ℤ, 𝑑 ∈ ℤ with 𝑑 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑑
such that 𝑎 = 𝑞𝑑 + 𝑟.

Division Theorem

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)



In Java, we have (almost)
div = “/ ” and mod = “ % ”

Division Theorem

q = a div d

For 𝑎 ∈ ℤ, 𝑑 ∈ ℤ with 𝑑 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑑
such that 𝑎 = 𝑞𝑑 + 𝑟.

Division Theorem

r = a mod d



Division Theorem

Note: r ≥ 0 even if a < 0.  
Not quite the same as  a%d.

For 𝑎 ∈ ℤ, 𝑑 ∈ ℤ with 𝑑 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑑
such that 𝑎 = 𝑞𝑑 + 𝑟.

Division Theorem

public class Test2 {
public static void main(String args[]) {

int a = -5;
int d = 2;
System.out.println(a % d);

}
}



While div is more familiar, our focus is on mod:
• provides a bound on the size (0 ≤ 𝑟 < 𝑑)
• need to connect that somehow to arithmetic...

Division Theorem

q = a div d

For 𝑎 ∈ ℤ, 𝑑 ∈ ℤ with 𝑑 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑑
such that 𝑎 = 𝑞𝑑 + 𝑟.

Division Theorem

r = a mod d



Arithmetic, mod 7

(a + b) mod 7
(a ´ b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

0
1

2

34

5

6



Modular Arithmetic

New notion of “sameness” that will help us 
understand modular arithmetic

For 𝑎, 𝑏,𝑚 ∈ ℤ with 𝑚 > 0
𝑎 ≡ 𝑏 mod 𝑚 ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”



Modular Arithmetic

Check Your Understanding.  What do each of these mean?
When are they true?

x ≡ 0 (mod 2)

-1 ≡ 19 (mod 5)

y ≡ 2 (mod 7)

For 𝑎, 𝑏,𝑚 ∈ ℤ with 𝑚 > 0
𝑎 ≡ 𝑏 mod 𝑚 ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”

This statement is the same as saying “x is even”; so, any x that is 
even (including negative even numbers) will work.

This statement is true.  19 - (-1) = 20 which is divisible by 5

This statement is true for  y in { ..., -12, -5, 2, 9, 16, ...}.  In other 
words, all y of the form 2+7k for k an integer. 



Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

Modular Arithmetic: A Property

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚). Therefore, m |(a-b)  and so  a ≡ b
(mod m).



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚).
Then, 𝑚 | (𝑎 – 𝑏) by definition of congruence.
So, 𝑎 – 𝑏 = 𝑘𝑚 for some integer 𝑘 by definition of divides.
Therefore, 𝑎 = 𝑏 + 𝑘𝑚. 
Taking both sides modulo 𝑚 we get:

𝑎 mod 𝑚 = (𝑏 + 𝑘𝑚) mod 𝑚 = 𝑏 mod 𝑚. mod m = b 



Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

Modular Arithmetic: A Property

Suppose that 𝑎 mod 𝑚 = 𝑏 mod 𝑚.



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

Suppose that 𝑎 mod 𝑚 = 𝑏 mod 𝑚.
By the division theorem, 𝑎 = 𝑚𝑞 + (𝑎 mod 𝑚) and

𝑏 = 𝑚𝑠 + (𝑏 mod 𝑚) for some integers 𝑞,𝑠.
Then, 𝑎 – 𝑏 = (𝑚𝑞 + (𝑎 mod 𝑚)) – (𝑚𝑠 + (𝑏 mod 𝑚))

= 𝑚(𝑞 – 𝑠) + (𝑎 mod 𝑚 – 𝑏 mod 𝑚)
= 𝑚(𝑞 – 𝑠) since 𝑎 mod 𝑚 = 𝑏 mod 𝑚

Therefore, 𝑚 |(𝑎 − 𝑏) and so  𝑎 ≡ 𝑏 (mod 𝑚).



The mod 𝑚 function vs the ≡ (mod 𝑚) predicate

• What we have just shown
– The mod 𝑚 function takes any 𝑎 ∈ ℤ and maps 

it to a remainder 𝑎 mod 𝑚 ∈ {0,1, . . , 𝑚 − 1}.

– Imagine grouping together all integers that have 
the same value of the mod 𝑚 function

That is, the same remainder in 0,1, . . , 𝑚 − 1 .

– The ≡ (mod 𝑚) predicate compares 𝑎, 𝑏 ∈ ℤ. It 
is true if and only if the mod 𝑚 function has the 
same value on 𝑎 and on 𝑏. 

That is, 𝑎 and 𝑏 are in the same group.



Modular Arithmetic: Basic Property

Let 𝒎 be a positive integer.
If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) and 𝒃 ≡ 𝒄 (𝐦𝐨𝐝𝒎),
then 𝒂 ≡ 𝒄 (𝐦𝐨𝐝𝒎)



Modular Arithmetic: Basic Property

Let 𝒎 be a positive integer.
If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) and 𝒃 ≡ 𝒄 (𝐦𝐨𝐝𝒎),
then 𝒂 ≡ 𝒄 (𝐦𝐨𝐝𝒎)

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑏 ≡ 𝑐 (mod 𝑚). 
Then, by the previous property, we have 
𝑎 mod 𝑚 = 𝑏 mod 𝑚 and 𝑏 mod 𝑚 = 𝑐 mod 𝑚. 

Putting these together, we have 𝑎 mod 𝑚 = 𝑐 mod 𝑚, 
which says that 𝑎 ≡ 𝑐 (mod 𝑚), by definition.

So “≡” behaves like “=“ in that sense.
And that is not the only similarity...



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) and     
𝒄 ≡ 𝒅 (𝐦𝐨𝐝𝒎), then 𝒂 + 𝒄 ≡ 𝒃 + 𝒅 (𝐦𝐨𝐝𝒎)



Modular Arithmetic: Addition Property

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑐 ≡ 𝑑 (mod 𝑚).  Unrolling 
definitions gives us some 𝑘 such that 𝑎 – 𝑏 = 𝑘𝑚,                            
and some 𝑗 such that 𝑐 – 𝑑 = 𝑗𝑚.

Adding the equations together gives us 
(𝑎 + 𝑐) – (𝑏 + 𝑑) = 𝑚(𝑘 + 𝑗).  Now, re-applying the definition 
of congruence gives us 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (mod 𝑚).

Let 𝒎 be a positive integer.  If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) and     
𝒄 ≡ 𝒅 (𝐦𝐨𝐝𝒎), then 𝒂 + 𝒄 ≡ 𝒃 + 𝒅 (𝐦𝐨𝐝𝒎)



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) and     
𝒄 ≡ 𝒅 (𝐦𝐨𝐝𝒎), then 𝒂𝒄 ≡ 𝒃𝒅 (𝐦𝐨𝐝𝒎)



Modular Arithmetic: Multiplication Property

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑐 ≡ 𝑑 (mod 𝑚).  Unrolling 
definitions gives us some 𝑘 such that 𝑎 – 𝑏 = 𝑘𝑚,                         
and some 𝑗 such that 𝑐 – 𝑑 = 𝑗𝑚.

Then, 𝑎 = 𝑘𝑚 + 𝑏 and 𝑐 = 𝑗𝑚 + 𝑑.  Multiplying both together 
gives us  𝑎𝑐 = (𝑘𝑚 + 𝑏)(𝑗𝑚 + 𝑑) = 𝑘𝑗𝑚2 + 𝑘𝑚𝑑 + 𝑏𝑗𝑚 + 𝑏𝑑.

Re-arranging gives us 𝑎𝑐 – 𝑏𝑑 = 𝑚(𝑘𝑗𝑚 + 𝑘𝑑 + 𝑏𝑗).                           
Using the definition of congruence gives us 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑚).

Let 𝒎 be a positive integer.  If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) and     
𝒄 ≡ 𝒅 (𝐦𝐨𝐝𝒎), then 𝒂𝒄 ≡ 𝒃𝒅 (𝐦𝐨𝐝𝒎)



Modular Arithmetic: Properties

If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) and 𝒃 ≡ 𝒄 (𝐦𝐨𝐝𝒎),
then 𝒂 ≡ 𝒄 (𝐦𝐨𝐝𝒎)

If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) and 𝒄 ≡ 𝒅 (𝐦𝐨𝐝𝒎),
then 𝒂 + 𝒄 ≡ 𝒃 + 𝒅 (𝐦𝐨𝐝𝒎)

If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎), then 𝒂 + 𝒄 ≡ 𝒃 + 𝒄 (𝐦𝐨𝐝𝒎)Corollary:

If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) and 𝒄 ≡ 𝒅 (𝐦𝐨𝐝𝒎),
then 𝒂𝒄 ≡ 𝒃𝒅 (𝐦𝐨𝐝𝒎)

If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎), then 𝒂𝒄 ≡ 𝒃𝒄 (𝐦𝐨𝐝𝒎)Corollary:



Modular Arithmetic: Properties

If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) and 𝒃 ≡ 𝒄 (𝐦𝐨𝐝𝒎),
then 𝒂 ≡ 𝒄 (𝐦𝐨𝐝𝒎)

If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎), then 𝒂 + 𝒄 ≡ 𝒃 + 𝒄 (𝐦𝐨𝐝𝒎)

If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎), then 𝒂𝒄 ≡ 𝒃𝒄 (𝐦𝐨𝐝𝒎)

“≡” allows us to solve problems in modular arithmetic, e.g.
• add / subtract numbers from both sides of equations
• chains of “≡” values shows first and last are “≡”
• substitute “≡ ” values in equations (not proven yet)



Example

Let 𝒏 be an integer.
Prove that 𝒏𝟐 ≡ 𝟎 (𝐦𝐨𝐝 𝟒) or 𝒏𝟐 ≡ 𝟏 (𝐦𝐨𝐝 𝟒)

Let’s start by looking a a small example:
02 = 0   ≡ 0 (mod 4)
12 = 1   ≡ 1 (mod 4)
22 = 4   ≡ 0 (mod 4)
32 = 9   ≡ 1 (mod 4)
42 = 16 ≡ 0 (mod 4)



Example

Let’s start by looking a a small example:
02 = 0   ≡ 0 (mod 4)
12 = 1   ≡ 1 (mod 4)
22 = 4   ≡ 0 (mod 4)
32 = 9   ≡ 1 (mod 4)
42 = 16 ≡ 0 (mod 4)

It looks like 
n ≡ 0 (mod 2) → n2 ≡ 0 (mod 4), and              
n ≡ 1 (mod 2) → n2 ≡ 1 (mod 4).

Case 1 (n is even):

Let 𝒏 be an integer.
Prove that 𝒏𝟐 ≡ 𝟎 (𝐦𝐨𝐝 𝟒) or 𝒏𝟐 ≡ 𝟏 (𝐦𝐨𝐝 𝟒)



Example

Let’s start by looking a a small example:
02 = 0   ≡ 0 (mod 4)
12 = 1   ≡ 1 (mod 4)
22 = 4   ≡ 0 (mod 4)
32 = 9   ≡ 1 (mod 4)
42 = 16 ≡ 0 (mod 4)

It looks like 
n ≡ 0 (mod 2) → n2 ≡ 0 (mod 4), and              
n ≡ 1 (mod 2) → n2 ≡ 1 (mod 4).

Case 1 (𝑛 is even):
Suppose 𝑛 is even.  
Then, 𝑛 = 2𝑘 for some integer 𝑘.
So, 𝑛2 = (2𝑘)V= 4𝑘2 = 0 + 4𝑘2. 
So, by the definition of congruence, 
we have 𝑛2 ≡ 0 (mod 4).

Let 𝒏 be an integer.
Prove that 𝒏𝟐 ≡ 𝟎 (𝐦𝐨𝐝 𝟒) or 𝒏𝟐 ≡ 𝟏 (𝐦𝐨𝐝 𝟒)



Example

Let’s start by looking a a small example:
02 = 0   ≡ 0 (mod 4)
12 = 1   ≡ 1 (mod 4)
22 = 4   ≡ 0 (mod 4)
32 = 9   ≡ 1 (mod 4)
42 = 16 ≡ 0 (mod 4)

It looks like 
n ≡ 0 (mod 2) → n2 ≡ 0 (mod 4), and              
n ≡ 1 (mod 2) → n2 ≡ 1 (mod 4).

Case 1 (n is even): Done.

Case 2 (n is odd):

Let 𝒏 be an integer.
Prove that 𝒏𝟐 ≡ 𝟎 (𝐦𝐨𝐝 𝟒) or 𝒏𝟐 ≡ 𝟏 (𝐦𝐨𝐝 𝟒)



Example

Let’s start by looking a a small example:
02 = 0   ≡ 0 (mod 4)
12 = 1   ≡ 1 (mod 4)
22 = 4   ≡ 0 (mod 4)
32 = 9   ≡ 1 (mod 4)
42 = 16 ≡ 0 (mod 4)

It looks like 
n ≡ 0 (mod 2) → n2 ≡ 0 (mod 4), and              
n ≡ 1 (mod 2) → n2 ≡ 1 (mod 4).

Case 1 (𝑛 is even): Done.

Case 2 (𝑛 is odd):
Suppose 𝑛 is odd.
Then, 𝑛 = 2𝑘 + 1 for some integer 𝑘.
So, 𝑛2 = 2𝑘 + 1 V

= 4𝑘2 + 4𝑘 + 1
= 4(𝑘2 + 𝑘) + 1. 

So, by definition of congruence,
we have 𝑛2 ≡ 1 (mod 4).

Let 𝒏 be an integer.
Prove that 𝒏𝟐 ≡ 𝟎 (𝐦𝐨𝐝 𝟒) or 𝒏𝟐 ≡ 𝟏 (𝐦𝐨𝐝 𝟒)

Result follows by proof by cases since n is either even or odd


