CSE 311: Foundations of Computing

Lecture 11: Modular Arithmetic and Applications

Last Class: Divisibility

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$: $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$

Check Your Understanding. Which of the following are true?

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}$ with d > 0there exist *unique* integers q, r with $0 \le r < d$ such that a = qd + r.

To put it another way, if we divide *d* into *a*, we get a unique quotient $q = a \operatorname{div} d$ and non-negative remainder $r = a \operatorname{mod} d$

Can then write $a = (a \operatorname{div} d) d + (a \operatorname{mod} d)$

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}$ with d > 0there exist *unique* integers q, r with $0 \le r < d$ such that a = qd + r.

Application: take d = 2...

$$a = 2q + r$$
 with $r \in \{0, 1\}$

- If r = 0, then a is **even**
- If r = 1, then a is **odd**

Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$

Hence, every integer is either even or odd.

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}$ with d > 0there exist *unique* integers q, r with $0 \le r < d$ such that a = qd + r.

$$q = a \operatorname{div} d$$
 $r = a \operatorname{mod} d$

In Java, we have (almost) div = "/ " and mod = " % "

```
For a \in \mathbb{Z}, d \in \mathbb{Z} with d > 0
there exist unique integers q, r with 0 \le r < d
such that a = qd + r.
```

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
} Note: r ≥ 0 even if a < 0.</pre>
```

Not quite the same as **a**%**d**.

For
$$a \in \mathbb{Z}$$
, $d \in \mathbb{Z}$ with $d > 0$
there exist *unique* integers q , r with $0 \le r < d$
such that $a = qd + r$.

$$q = a \operatorname{div} d$$
 $r = a \operatorname{mod} d$

While **div** is more familiar, our focus is on **mod**:

- provides a bound on the size $(0 \le r < d)$
- need to connect that somehow to arithmetic...

(a + b) mod 7 (a × b) mod 7

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

New notion of "sameness" that will help us understand modular arithmetic

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

 $x \equiv 0 \pmod{2}$

This statement is the same as saying "x is even"; so, any x that is even (including negative even numbers) will work.

 $-1 \equiv 19 \pmod{5}$

This statement is true. 19 - (-1) = 20 which is divisible by 5

 $y \equiv 2 \pmod{7}$

This statement is true for y in { ..., -12, -5, 2, 9, 16, ...}. In other words, all y of the form 2+7k for k an integer.

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv b \pmod{m}$.

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv b \pmod{m}$.

Then, $m \mid (a - b)$ by definition of congruence.

So, a - b = km for some integer k by definition of divides.

Therefore, a = b + km.

Taking both sides modulo *m* we get:

 $a \mod m = (b + km) \mod m = b \mod m$.

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$.

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$.

By the division theorem, $a = mq + (a \mod m)$ and

 $b = ms + (b \mod m)$ for some integers q,s.

Then, $a - b = (mq + (a \mod m)) - (ms + (b \mod m))$

 $= m(q-s) + (a \mod m - b \mod m)$

= m(q - s) since $a \mod m = b \mod m$

Therefore, $m \mid (a - b)$ and so $a \equiv b \pmod{m}$.

- What we have just shown
 - The mod *m* function takes any $a \in \mathbb{Z}$ and maps it to a remainder $a \mod m \in \{0, 1, ..., m 1\}$.
 - Imagine grouping together all integers that have the same value of the mod m function That is, the same remainder in $\{0, 1, ..., m - 1\}$.
 - The $\equiv \pmod{m}$ predicate compares $a, b \in \mathbb{Z}$. It is true if and only if the mod m function has the same value on a and on b.

That is, *a* and *b* are in the same group.

```
Let m be a positive integer.
If a \equiv b \pmod{m} and b \equiv c \pmod{m},
then a \equiv c \pmod{m}
```

```
Let m be a positive integer.
If a \equiv b \pmod{m} and b \equiv c \pmod{m},
then a \equiv c \pmod{m}
```

Suppose that $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$. Then, by the previous property, we have $a \mod m = b \mod m$ and $b \mod m = c \mod m$.

Putting these together, we have $a \mod m = c \mod m$, which says that $a \equiv c \pmod{m}$, by definition.

So " \equiv " behaves like "=" in that sense. And that is not the only similarity...

Modular Arithmetic: Addition Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Adding the equations together gives us (a + c) - (b + d) = m(k + j). Now, re-applying the definition of congruence gives us $a + c \equiv b + d \pmod{m}$.

Modular Arithmetic: Multiplication Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Then, a = km + b and c = jm + d. Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + bjm + bd$.

Re-arranging gives us ac - bd = m(kjm + kd + bj). Using the definition of congruence gives us $ac \equiv bd \pmod{m}$. If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Corollary: If $a \equiv b \pmod{m}$, then $a + c \equiv b + c \pmod{m}$

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

Corollary: If $a \equiv b \pmod{m}$, then $ac \equiv bc \pmod{m}$

If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$

If $a \equiv b \pmod{m}$, then $a + c \equiv b + c \pmod{m}$

If $a \equiv b \pmod{m}$, then $ac \equiv bc \pmod{m}$

" \equiv " allows us to solve problems in modular arithmetic, e.g.

- add / subtract numbers from both sides of equations
- chains of " \equiv " values shows first and last are " \equiv "
- substitute " \equiv " values in equations (not proven yet)

Let's start by looking a a small example:

 $0^2 = 0 \equiv 0 \pmod{4}$ $1^2 = 1 \equiv 1 \pmod{4}$ $2^2 = 4 \equiv 0 \pmod{4}$ $3^2 = 9 \equiv 1 \pmod{4}$ $4^2 = 16 \equiv 0 \pmod{4}$

Case 1 (n is even):

Let's start by looking a a small example:

 $0^2 = 0 \equiv 0 \pmod{4}$ $1^2 = 1 \equiv 1 \pmod{4}$ $2^2 = 4 \equiv 0 \pmod{4}$ $3^2 = 9 \equiv 1 \pmod{4}$ $4^2 = 16 \equiv 0 \pmod{4}$

It looks like

n ≡ 0 (mod 2) \rightarrow n² ≡ 0 (mod 4), and n ≡ 1 (mod 2) \rightarrow n² ≡ 1 (mod 4).

Let's start by looking a a small example:

Case 1 (*n* is even): Suppose *n* is even. Then, n = 2k for some integer *k*. So, $n^2 = (2k)^2 = 4k^2 = 0 + 4k^2$. So, by the definition of congruence, we have $n^2 \equiv 0 \pmod{4}$.

 $0^{2} = 0 \equiv 0 \pmod{4}$ $1^{2} = 1 \equiv 1 \pmod{4}$ $2^{2} = 4 \equiv 0 \pmod{4}$ $3^{2} = 9 \equiv 1 \pmod{4}$ $4^{2} = 16 \equiv 0 \pmod{4}$

It looks like

n ≡ 0 (mod 2) \rightarrow n² ≡ 0 (mod 4), and n ≡ 1 (mod 2) \rightarrow n² ≡ 1 (mod 4).

Case 1 (n is even): Done.

Case 2 (n is odd):

Let's start by looking a a small example:

 $0^{2} = 0 \equiv 0 \pmod{4}$ $1^{2} = 1 \equiv 1 \pmod{4}$ $2^{2} = 4 \equiv 0 \pmod{4}$ $3^{2} = 9 \equiv 1 \pmod{4}$ $4^{2} = 16 \equiv 0 \pmod{4}$

It looks like

n ≡ 0 (mod 2) \rightarrow n² ≡ 0 (mod 4), and n ≡ 1 (mod 2) \rightarrow n² ≡ 1 (mod 4).

Let *n* be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$ Let's start by looking a a small example: Case 1 (*n* is even): Done. $0^2 = 0 \equiv 0 \pmod{4}$ $1^2 = 1 \equiv 1 \pmod{4}$ Case 2 (*n* is odd): $2^2 = 4 \equiv 0 \pmod{4}$ Suppose *n* is odd. $3^2 = 9 \equiv 1 \pmod{4}$ Then, n = 2k + 1 for some integer k. $4^2 = 16 \equiv 0 \pmod{4}$ So, $n^2 = (2k + 1)^2$ $=4k^{2}+4k+1$ It looks like $=4(k^2+k)+1.$ $n \equiv 0 \pmod{2} \rightarrow n^2 \equiv 0 \pmod{4}$, and So, by definition of congruence, $n \equiv 1 \pmod{2} \rightarrow n^2 \equiv 1 \pmod{4}$. we have $n^2 \equiv 1 \pmod{4}$.

Result follows by proof by cases since n is either even or odd