CSE 311: Foundations of Computing

Lecture 10: Set Operations \& Representation,

 Modular Arithmetic

Last Time: Set Theory

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

$$
\begin{aligned}
& \text { Some simple examples } \\
& A=\{1\} \\
& B=\{1,3,2\} \\
& C=\{\square, 1\} \\
& D=\{\{17\}, 17\} \\
& E=\{1,2,7, \text { cat, dog, } \varnothing, \alpha\}
\end{aligned}
$$

Last Time: Operations on Sets

- Definition for U based on V

$$
A \cup B=\{x:(x \in A) \vee(x \in B)\}
$$

- Definition for \cap based on \wedge

$$
A \cap B=\{x:(x \in A) \wedge(x \in B)\}
$$

- Complement based on \neg

$$
\bar{A}=\{x: \neg(x \in A)\}
$$

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$.

Thus, we have $x \in A^{C} \cap B^{C}$.

Proof technique:
To show $\mathrm{C}=\mathrm{D}$ show
$x \in \mathrm{C} \rightarrow x \in \mathrm{D}$ and
$x \in \mathrm{D} \rightarrow x \in \mathrm{C}$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by definition of
complement, we have $\neg(x \in A \cup B)$. The latter is equivalent to $\neg(x \in A \vee x \in B)$.

Thus, we have $x \in A^{C} \cap B^{C}$.

$$
\begin{aligned}
& \text { Proof technique: } \\
& \text { To show } C=D \text { show } \\
& x \in C \rightarrow x \in D \text { and } \\
& x \in D \rightarrow x \in C
\end{aligned}
$$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by definition of complement, we have $\neg(x \in A \cup B)$. The latter is equivalent to $\neg(x \in A \vee x \in B)$, which is equivalent to
$\neg(x \in A) \wedge \neg(x \in B)$ by De Morgan's law.

Thus, we have $x \in A^{C} \cap B^{C}$.

$$
\begin{aligned}
& \text { Proof technique: } \\
& \text { To show } \mathrm{C}=\mathrm{D} \text { show } \\
& x \in \mathrm{C} \rightarrow x \in \mathrm{D} \text { and } \\
& x \in \mathrm{D} \rightarrow x \in \mathrm{C}
\end{aligned}
$$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by definition of complement, we have $\neg(x \in A \cup B)$. The latter is equivalent to $\neg(x \in A \vee x \in B)$, which is equivalent to $\neg(x \in A) \wedge \neg(x \in B)$ by De Morgan's law. We then have $x \in A^{C}$ and $x \in B^{C}$, by the definition of complement, so we have $x \in A^{C} \cap B^{C}$ by the definition of intersection.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C} \ldots$. Then, $x \in A^{C} \cap B^{C}$.
Suppose $x \in A^{C} \cap B^{C}$. Then, by definition of intersection, we have $x \in A^{C}$ and $x \in B^{C}$. That is, we have $\neg(x \in A) \wedge \neg(x \in B)$, which is equivalent to $\neg(x \in A \vee x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in(A \cup B)^{C}$, by the definition of complement.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
The stated bi-condition holds since:

$$
\left.\begin{array}{rlrl}
x \in(A \cup B)^{C} & \equiv \neg(x \in A \cup B) & & \text { def of }-C \\
& \equiv \neg(x \in A \vee x \in B) & & \text { def of } \cup \\
& \equiv \neg(x \in A) \wedge \neg(x \in B) & & \text { De Morgan } \\
& \equiv x \in A^{C} \wedge x \in B^{C} & & \text { def of }-C \\
& \equiv \text { Chains of equivivelences } \\
\text { are often easier to read }
\end{array}\right) \equiv x \in A^{C} \cap B^{C} \quad ~ \begin{array}{ll}
\text { def of } \cap
\end{array}
$$

Distributive Laws

$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
 $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

It's Propositional Logic Again!

Meta-Theorem: Translate any Propositional Logic equivalence into " $=$ " relationship between sets by replacing U with \vee, \cap with \wedge, and \cdot^{C} with \neg.
"Proof": Let x be an arbitrary object.
The stated bi-condition holds since:
$x \in$ left side $\quad \equiv$ replace set ops with propositional logic
三 apply Propositional Logic equivalence
\equiv replace propositional logic with set ops
$\equiv x \in$ right side
Since x was arbitrary, we have shown the sets are equal. ■

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=$?
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=\{\{M, W, F\},\{M, W\},\{M, F\},\{W, F\},\{M\},\{W\},\{F\}, \varnothing\}$
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class

$$
\mathcal{P} \text { (Days) }=\{\{M, W, F\},\{M, W\},\{M, F\},\{W, F\},\{M\},\{W\},\{F\}, \varnothing\}
$$

$$
\mathcal{P}(\varnothing)=\{\varnothing\} \neq \varnothing
$$

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$,
$(2, a),(2, b),(2, c)\}$.

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

$$
\text { If } \begin{aligned}
A=\{1,2\}, B=\{a, b, c\}, \text { then } A \times B=\{ & \{(1, a),(1, b),(1, c) \\
& (2, a),(2, b),(2, c)\} .
\end{aligned}
$$

What is $A \times \emptyset ?$

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$, $(2, a),(2, b),(2, c)\}$.
$\boldsymbol{A} \times \emptyset=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \boldsymbol{b} \in \emptyset\}=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \mathrm{F}\}=\varnothing$

Representing Sets Using Bits

- Suppose universe U is $\{1,2, \ldots, n\}$
- Can represent set $B \subseteq U$ as a vector of bits:

$$
\begin{array}{ll}
b_{1} b_{2} \ldots b_{n} \text { where } & b_{i}=1 \text { when } i \in B \\
& b_{i}=0 \text { when } i \notin B
\end{array}
$$

- Called the characteristic vector of set B
- Given characteristic vectors for A and B
- What is characteristic vector for $A \cup B$? $A \cap B$?

Bitwise Operations

01101101
Java: $\quad \mathbf{z = x} \mid y$
v 00110111
01111111

00101010
Java: $\quad \mathbf{z = x} \& y$
ヘ 00001111 00001010

01101101
00110111 \quad Java: $\quad z=x^{\wedge} y$

A Useful Identity

- If x and y are bits: $(x \oplus y) \oplus y=$?
- What if x and y are bit-vectors?

Private Key Cryptography

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.

One-Time Pad

- Alice and Bob privately share random n-bit vector K
- Eve does not know K
- Later, Alice has n-bit message m to send to Bob
- Alice computes $\mathbf{C = m} \oplus K$
- Alice sends C to Bob
- Bob computes $m=C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

Russell's Paradox

$$
S=\{x: x \notin x\}
$$

Suppose for contradiction that $S \in S$...

Russell's Paradox

$$
S=\{x: x \notin x\}
$$

Suppose for contradiction that $S \in S$. Then, by definition of $S, S \notin S$, but that's a contradiction.

Suppose for contradiction that $S \notin S$. Then, by definition of the set $S, S \in S$, but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
- Cryptography
- Hashing
- Security
- Important tool set

Modular Arithmetic

- Arithmetic over a finite domain
- In computing, almost all computations are over a finite domain

I'm ALIVE!

```
public class Test {
    final static int SEC_IN_YEAR = 364*24*60*60*100;
    public static void main(String args[]) {
        System.out.println(
            "I will be alive for at least " +
            SEC_IN_YEAR * 101 + " seconds."
        );
    }
}
```


I'm ALIVE!

```
public class Test {
    final static int SEC_IN_YEAR = 364*24*60*60*100;
    public static void main(String args[]) {
        System.out.println(
            "I will be alive for at least " +
            SEC_IN_YEAR * 101 + " seconds."
        );
    }
}
```

```
----jGRASP exec: java Test
I will be alive for at least -186619904 seconds.
    ----jGRASP: operation complete.
```


Divisibility

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:

$$
a \mid b \leftrightarrow \exists k \in \mathbb{Z}(b=k a)
$$

Check Your Understanding. Which of the following are true?
5|1
25 | 5
$5 \mid 0$
$3 \mid 2$
1 | 5
$5 \mid 25$
$0 \mid 5$
$2 \mid 3$

Divisibility

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:

$$
a \mid b \leftrightarrow \exists k \in \mathbb{Z}(b=k a)
$$

Check Your Understanding. Which of the following are true?

Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$ there exist unique integers q, r with $0 \leq r<d$ such that $a=d q+r$.

To put it another way, if we divide d into a, we get a unique quotient $q=a \operatorname{div} d$ and non-negative remainder $r=a \bmod d$

Note: $r \geq 0$ even if $a<0$. Not quite the same as $a \% d$.

Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$ there exist unique integers q, r with $0 \leq r<d$ such that $a=d q+r$.

To put it another way, if we divide d into a, we get a unique quotient $q=a \operatorname{div} d$ and non-negative remainder $r=a \bmod d$

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
}
```

Note: $r \geq 0$ even if $a<0$. Not quite the same as $a \% d$.

