CSE 311: Foundations of Computing

Lecture 9: Proof Strategies & Set Theory
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that!...But look: Four wrongs squared, minus two
wrongs to the fourth power, divided by this
formula, do make a right.”



Last class: English Proofs

* High-level language let us work more quickly

— should not be necessary to spill out every detail
— examples so far

skipping Intro A and Elim A (and hence, Commutativity and Associativity)
skipping Double Negation

not stating existence claims (immediately apply Elim 3 to name the object)

not stating that the implication has been proven (“Suppose X... Thus, Y.” says it already)

— (list will grow over time)

English proof is correct if the reader believes they
could translate it into a formal proof

— the reader is the “compiler” for English proofs




Proof Strategies



Proof Strategies: Counterexamples

To prove —Vx P(x), prove 3—P(x):
* Equivalent by De Morgan’s Law
 All we need to do that is find an x where P(x) is false
* This example is called a counterexample to Vx P(x).

e.g. Prove “Not every prime number is odd”

Proof: 2 is a prime that is not odd — a counterexample
to the claim that every prime number is odd. B



Proof Strategies: Proof by Contrapositive

If we assume —q and derive —p, then we have proven
—q — —p, which is equivalent to proving p — q.

1.1. —¢q Assumption

1.3.—p
1. —q—>—p Direct Proof Rule
2. p—q Contrapositive: 1



Proof Strategies: Proof by Contrapositive

If we assume —q and derive —p, then we have proven
—q — —p, which is equivalent to proving p — q.

We will prove the contrapositive.
Suppose —(. 1.1. —q Assumption
Thus, —pP. 1.3. —p

1. —q—>—p Direct Proof Rule
2. p—oq Contrapositive: 1



Proof by Contradiction: One way to prove —p

If we assume p and derive F (a contradiction), then
we have proven —p.

1.1. p  Assumption

1.3. F

1. p—>F Direct Proof rule
2. —.pVvF Law of Implication: 1

3. —p Identity: 2



Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we
have proven —p.

We will argue by contradiction.

Suppose p. 1.1. p Assumption
L . 1.3. F
This is a contradiction.
1. p—>F Direct Proof rule

—p Vv F Law of Implication: 1
Identity: 2
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Predicate Definitions - -
Domain of Discourse

Even(x)=3y (x = 2y)
Even and Odd 0dd(x) = 3y (x = 2y + 1) | Integers

Prove: “No integer is both even and odd.”
Formally, prove — dx (Even(x)AOdd(x))

Proof: We work by contradiction.

Suppose that x is an integer that is both even and odd.
Then, x=2a for some integer a, and x=2b+1 for some
integer b. This means 2a=x=2b+1 and hence 2a-2b=1
and so a-b=). But a-b is an integer while % is not, so
they cannot be equal. This is a contradiction. ®



Strategies

* Simple proof strategies already do a lot
— counter examples
— proof by contrapositive
— proof by contradiction

 Later we will cover a specific strategy that applies
to loops and recursion (mathematical induction)



Applications of Predicate Logic

* Remainder of the course will use predicate logic to
prove important properties of interesting objects
— start with math objects that are widely used in CS
— eventually more CS-specific objects

* Encode domain knowledge in predicate definitions
 Then apply predicate logic to infer useful results

Domain of Discourse Predicate Definitions
Integers Even(x) =3y (x = 2-y)
Pdd(x) =dy(x=2-y+ 1))




Set Theory



Set Theory

Sets are collections of objects called elements.

Write a € B to say that a is an element of set B,
and a & B to say that it is not.

Some simple examples
A={1}

B={1, 3, 2}

Cc={L1, 1}

D={{17}, 17}

E={1, 2, 7, cat, dog, I, a}




Some Common Sets

N is the set of Natural Numbers; N={0, 1, 2, ...}

Z is the set of Integers; Z ={...,-2,-1,0, 1, 2, ...}

Q is the set of Rational Numbers; e.g. }5, -17, 32/48
R is the set of Real Numbers; e.g. 1,-17, 32/48, m,\/2
[n] is the set {1, 2, ..., n} when n is a natural number
D ={} is the empty set; the only set with no elements




Sets can be elements of other sets

For example
A = {{1},{2},{1,2},}
B=1{1,2}

Then B € A.




Definitions

* A and B are equal if they have the same elements

A=B =Vx(xe A x e B)

* Ais asubset of B if every element of A is also in B

AcB=Vx(xe A—> xeB)

* Notes: (A=B) =(A<SB) A(Bc A

A2BmeansBE A ACBmeansACS B



Definition: Equality

A and B are equal if they have the same elements

A=B =Vx(xe A x e B)

A={1, 2,3}
B=1{3,4,5}
C={3, 4}
D=14, 3, 3} Which sets are equal to each other?
E=1{3, 4,3}
F =14, 3}}




Definition: Subset

A is a subset of B if every element of A is also in B

AcB=Vx(xe A—>xeB)

A=1{1, 2, 3}
B={3, 4,5}
C=1{3, 4}
QUESTIONS
< A?
AcB?

CcB?




Building Sets from Predicates

S = the set of all* x for which P(x) is true

S ={x:P(x)}

S = the set of all x in A for which P(x) is true

S={x € A:P(x)}

*in the domain of P, usually called the “universe” U



Set Operations

AUB={x:(x€A)V(x €B)} Union

ANB={x:(x€A)A(x €B)} |Intersection

A\B={x:(x€A)N(x &B)} SetDifference

A=11, 2, 3}
B=1{3,5, 6}
C=13, 4}

QUESTIONS
Using A, B, C and set operations, make...
[6] =
{3} =
{1,2} =




More Set Operations

A B = {x : (x = A) a (.X' = B)} Sy.mmetric
Difference

A=A={x:x¢ A}

(with respect to universe U) Complement

A=11,2,3}

B={1, 2, 4, 6}
A ALY A B: 3 4 6
Universe: EB 13,4, 6}

U={1,2,3,4,56 | AT




De Morgan’s Laws

AUB=ANB

ANB=AUB



