CSE 311: Foundations of Computing

Lecture 9: Proof Strategies & Set Theory

"Yes, yes, I know that, Sidney...everybody knows that!...But look: Four wrongs squared, minus two wrongs to the fourth power, divided by this formula, do make a right."

Last class: English Proofs

- High-level language let us work more quickly
 - should not be necessary to spill out every detail

examples so far

skipping Intro \wedge and Elim \wedge (and hence, Commutativity and Associativity) skipping Double Negation

not stating existence claims (immediately apply Elim ∃ to name the object) not stating that the implication has been proven ("Suppose X... Thus, Y." says it already)

- (list will grow over time)

 English proof is correct if the <u>reader</u> believes they could translate it into a formal proof

- the reader is the "compiler" for English proofs

Proof Strategies

To prove $\neg \forall x P(x)$, prove $\exists \neg P(x)$:

- Equivalent by De Morgan's Law
- All we need to do that is find an x where P(x) is false
- This example is called a *counterexample* to $\forall x P(x)$.

e.g. Prove "Not every prime number is odd"

Proof: 2 is a prime that is not odd — a counterexample to the claim that every prime number is odd.

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

We will prove the contrapositive.

Suppose $\neg q$.	1.1. ¬ <i>q</i>	Assumption
Thus, ⊣p.	1.3. ¬ <i>p</i>	
	1. $\neg q \rightarrow \neg p$	Direct Proof Rule
	2. $p \rightarrow q$	Contrapositive: 1

If we assume p and derive F (a contradiction), then we have proven $\neg p$.

	1.1 . <i>p</i>	Assumption
	1.3. F	
1.	$p ightarrow {\sf F}$	Direct Proof rule
2.	$ eg \mathbf{p} ee \mathbf{F}$	Law of Implication: 1
3.	$\neg p$	Identity: 2

If we assume **p** and derive **F** (a contradiction), then we have proven $\neg \mathbf{p}$.

We will argue by contradiction.

Suppose <i>p</i> .	1.1. <i>p</i>	Assumption
 This is a contradiction.	1.3. F 1. $p \rightarrow F$ 2. $\neg p \lor F$ 3. $\neg p$	Direct Proof rule Law of Implication: 1 Identity: 2

Predicate Definitions Even(x) $\equiv \exists y \ (x = 2y)$ Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Prove: "No integer is both even and odd." Formally, prove $\neg \exists x (Even(x) \land Odd(x))$

Proof: We work by contradiction.

Suppose that x is an integer that is both even and odd. Then, x=2a for some integer a, and x=2b+1 for some integer b. This means 2a=x=2b+1 and hence 2a-2b=1 and so a-b=½. But a-b is an integer while ½ is not, so they cannot be equal. This is a contradiction. ■

- Simple proof strategies already do a lot
 - counter examples
 - proof by contrapositive
 - proof by contradiction
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

- Remainder of the course will use predicate logic to prove <u>important</u> properties of <u>interesting</u> objects
 - start with math objects that are widely used in CS
 - eventually more CS-specific objects
- Encode domain knowledge in predicate definitions
- Then apply predicate logic to infer useful results

Predicate Definitions Even(x) $\equiv \exists y (x = 2 \cdot y)$ Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$

Set Theory

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

> Some simple examples $A = \{1\}$ $B = \{1, 3, 2\}$ $C = \{\Box, 1\}$ $D = \{\{17\}, 17\}$ $E = \{1, 2, 7, cat, dog, \emptyset, \alpha\}$

N is the set of Natural Numbers; $\mathbb{N} = \{0, 1, 2, ...\}$ \mathbb{Z} is the set of Integers; $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ \mathbb{Q} is the set of Rational Numbers; e.g. $\frac{1}{2}$, -17, 32/48 \mathbb{R} is the set of Real Numbers; e.g. 1, -17, 32/48, $\pi,\sqrt{2}$ [n] is the set {1, 2, ..., n} when n is a natural number $\emptyset = \{\}$ is the empty set; the *only* set with no elements For example A = {{1},{2},{1,2}, \emptyset } B = {1,2}

Then $B \in A$.

• A and B are equal if they have the same elements

$$\mathsf{A} = \mathsf{B} \equiv \forall x \ (x \in \mathsf{A} \leftrightarrow x \in \mathsf{B})$$

• A is a subset of B if every element of A is also in B

$$A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$$

• Notes: $(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$

$$A \supseteq B$$
 means $B \subseteq A$ $A \subset B$ means $A \subseteq B$

A and B are equal if they have the same elements

$$\mathsf{A} = \mathsf{B} \equiv \forall x \ (x \in \mathsf{A} \leftrightarrow x \in \mathsf{B})$$

$$A = \{1, 2, 3\}$$
$$B = \{3, 4, 5\}$$
$$C = \{3, 4\}$$
$$D = \{4, 3, 3\}$$
$$E = \{3, 4, 3\}$$
$$F = \{4, \{3\}\}$$

Which sets are equal to each other?

A is a subset of B if every element of A is also in B

$$A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$$

 $S = the set of all^* x for which P(x) is true$

 $S = \{x : P(x)\}$

S = the set of all x in A for which P(x) is true

$$\mathsf{S} = \{\mathsf{x} \in \mathsf{A} : \mathsf{P}(\mathsf{x})\}$$

*in the domain of P, usually called the "universe" U

$$A \cup B = \{ x : (x \in A) \lor (x \in B) \}$$
 Union

$$A \cap B = \{ x : (x \in A) \land (x \in B) \}$$
 Intersection

$$A \setminus B = \{ x : (x \in A) \land (x \notin B) \}$$

Set Difference

A = {1, 2, 3} B = {3, 5, 6} C = {3, 4}	<u>QUESTIONS</u> Using A, B, C and set operations, make [6] =
	$\{3\} = \{1,2\} =$

$$A \oplus B = \{ x : (x \in A) \oplus (x \in B) \}$$

Symmetric Difference

$$\overline{A} = A^{C} = \{ x : x \notin A \}$$
(with respect to universe U

Complement

A =
$$\{1, 2, 3\}$$

B = $\{1, 2, 4, 6\}$
Universe:
U = $\{1, 2, 3, 4, 5, 6\}$

$$A \bigoplus B = \{3, 4, 6\}$$

 $\overline{A} = \{4, 5, 6\}$

$\overline{A \cup B} = \overline{A} \cap \overline{B}$

$\overline{A \cap B} = \overline{A} \cup \overline{B}$