CSE 311: Foundations of Computing

Lecture 9: Proof Strategies \& Set Theory

"Yes, yes, I know that, Sidney...everybody knows that!... But look: Four wrongs squared, minus two wrongs to the fourth power, divided by this formula, do make a right."

Last class: English Proofs

- High-level language let us work more quickly
- should not be necessary to spill out every detail
- examples so far
skipping Intro \wedge and Elim \wedge (and hence, Commutativity and Associativity) skipping Double Negation
not stating existence claims (immediately apply Elim \exists to name the object) not stating that the implication has been proven ("Suppose X... Thus, Y." says it already)
- (list will grow over time)
- English proof is correct if the reader believes they could translate it into a formal proof
- the reader is the "compiler" for English proofs

Proof Strategies

Proof Strategies: Counterexamples

To prove $\neg \forall x P(x)$, prove $\exists \neg P(x)$:

- Equivalent by De Morgan's Law
- All we need to do that is find an x where $P(x)$ is false
- This example is called a counterexample to $\forall \boldsymbol{x} P(x)$.

e.g. Prove "Not every prime number is odd"

Proof: $\mathbf{2}$ is a prime that is not odd - a counterexample to the claim that every prime number is odd.

Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg \mathrm{p}$, which is equivalent to proving $\mathrm{p} \rightarrow \mathrm{q}$.

$$
\text { 1.1. } \neg q \quad \text { Assumption }
$$

1.3. $\neg p$

1. $\neg q \rightarrow \neg p \quad$ Direct Proof Rule
2. $p \rightarrow q$

Contrapositive: 1

Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg \mathrm{q} \rightarrow \neg \mathrm{p}$, which is equivalent to proving $\mathrm{p} \rightarrow \mathrm{q}$.

We will prove the contrapositive.
Suppose $\neg q$.

Thus, $\neg p$.
1.1. $\neg q \quad$ Assumption
...
1.3. $\neg p$

1. $\neg q \rightarrow \neg p \quad$ Direct Proof Rule
2. $\boldsymbol{p} \rightarrow \boldsymbol{q} \quad$ Contrapositive: 1

Proof by Contradiction: One way to prove $\neg \mathrm{p}$

If we assume p and derive F (a contradiction), then we have proven $\neg \mathrm{p}$.
1.1. p Assumption
1.3. F

1. $p \rightarrow F$
2. $\neg p \vee F$

Law of Implication: 1
3. $\neg p \quad$ Identity: 2

Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we have proven \neg p.

We will argue by contradiction.
Suppose p.

This is a contradiction.

	1.1. p	Assumption
	\ldots	
	1.3. F	
1. $p \rightarrow \mathrm{~F}$	Direct Proof rule	
2. $\neg p \vee \mathrm{~F}$	Law of Implication: 1	
3. $\neg p$	Identity: 2	

Even and Odd

Predicate Definitions
Even $(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove: "No integer is both even and odd."

Formally, prove $\neg \exists x(\operatorname{Even}(x) \wedge O d d(x))$
Proof: We work by contradiction.
Suppose that x is an integer that is both even and odd. Then, $x=2 a$ for some integer a, and $x=2 b+1$ for some integer b. This means $2 a=x=2 b+1$ and hence $2 a-2 b=1$ and so $a-b=1 / 2$. But $a-b$ is an integer while $1 / 2$ is not, so they cannot be equal. This is a contradiction.

Strategies

- Simple proof strategies already do a lot
- counter examples
- proof by contrapositive
- proof by contradiction
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Applications of Predicate Logic

- Remainder of the course will use predicate logic to prove important properties of interesting objects
- start with math objects that are widely used in CS
- eventually more CS-specific objects
- Encode domain knowledge in predicate definitions
- Then apply predicate logic to infer useful results

Domain of Discourse

Integers

$$
\begin{array}{|l|}
\hline \text { Predicate Definitions } \\
\hline \text { Even }(x) \equiv \exists y(x=2 \cdot y) \\
\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1) \\
\hline
\end{array}
$$

Set Theory

Set Theory

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

$$
\begin{aligned}
& \text { Some simple examples } \\
& A=\{1\} \\
& B=\{1,3,2\} \\
& C=\{\square, 1\} \\
& D=\{\{17\}, 17\} \\
& E=\{1,2,7, \text { cat, dog, } \varnothing, \alpha\}
\end{aligned}
$$

Some Common Sets

\mathbb{N} is the set of Natural Numbers; $\mathbb{N}=\{0,1,2, \ldots\}$
\mathbb{Z} is the set of Integers; $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
\mathbb{Q} is the set of Rational Numbers; e.g. $1 / 2,-17,32 / 48$ \mathbb{R} is the set of Real Numbers; e.g. $1,-17,32 / 48, \pi, \sqrt{2}$ [n] is the set $\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$ when \mathbf{n} is a natural number $\varnothing=\{ \}$ is the empty set; the only set with no elements

Sets can be elements of other sets

> For example $\begin{aligned} & A=\{\{1\},\{2\},\{1,2\}, \varnothing\} \\ & B=\{1,2\}\end{aligned}$

Then $B \in A$.

Definitions

- A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

- A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

- Notes:

$$
(A=B) \equiv(A \subseteq B) \wedge(B \subseteq A)
$$

$A \supseteq B$ means $B \subseteq A \quad A \subset B$ means $A \subseteq B$

Definition: Equality

A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\} \\
& D=\{4,3,3\} \\
& E=\{3,4,3\} \\
& F=\{4,\{3\}\}
\end{aligned}
$$

Which sets are equal to each other?

Definition: Subset

A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\}
\end{aligned}
$$

	QUESTIONS
$A \subseteq A ?$	
$C \subseteq B ?$	

Building Sets from Predicates

$S=$ the set of all* x for which $P(x)$ is true

$$
S=\{x: P(x)\}
$$

$S=$ the set of all x in A for which $P(x)$ is true

$$
S=\{x \in A: P(x)\}
$$

*in the domain of P, usually called the "universe" U

Set Operations

$$
A \cup B=\{x:(x \in A) \vee(x \in B)\} \text { Union }
$$

$A \cap B=\{x:(x \in A) \wedge(x \in B)\}$ Intersection
$A \backslash B=\{x:(x \in A) \wedge(x \notin B)\}$ Set Difference

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,5,6\} \\
& C=\{3,4\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Using A, B, C and set operations, make... } \\
& {[6]=} \\
& \{3\}= \\
& \{1,2\}=
\end{aligned}
$$

More Set Operations

$$
A \oplus B=\{x:(x \in A) \oplus(x \in B)\} \quad \begin{aligned}
& \text { Symmetric } \\
& \text { Difference }
\end{aligned}
$$

$$
\bar{A}=A^{C}=\{x: x \notin A\}
$$

(with respect to universe U)

$$
\begin{array}{|l|}
\hline A=\{1,2,3\} \\
B=\{1,2,4,6\} \\
\text { Universe: } \\
U=\{1,2,3,4,5,6\}
\end{array} \quad \begin{aligned}
& A \oplus B=\{3,4,6\} \\
& \bar{A}=\{4,5,6\}
\end{aligned}
$$

De Morgan's Laws

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

