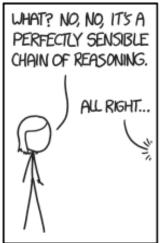
CSE 311: Foundations of Computing

Lecture 8: Predicate Logic Proofs





Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Elim ∧
$$A \land B$$

∴ A, B

∴ A ∧ B

∴ A ∧ B

∴ A ∧ B

∴ A ∨ B; ¬A

∴ B

∴ A ∨ B, B ∨ A

Modus Ponens

∴ B

Direct Proof
Rule

∴ A → B

∴ A → B

Not like other rules

One General Proof Strategy

- 1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

Prove: $(p \land q) \rightarrow (p \lor q)$

Prove: $(p \land q) \rightarrow (p \lor q)$

1.1. $p \wedge q$

Assumption

1.? $p \vee q$

1. $(p \land q) \rightarrow (p \lor q)$

Direct Proof Rule

Prove: $(p \land q) \rightarrow (p \lor q)$

1.1. $p \wedge q$

1.2. *p*

Assumption

Elim ∧: **1.1**

1.? $p \vee q$

 $1. \quad (p \land q) \rightarrow (p \lor q)$

Direct Proof Rule

Prove: $(p \land q) \rightarrow (p \lor q)$

- 1.1. $p \wedge q$
- 1.2. *p*
- **1.3.** $p \vee q$
- $1. \quad (p \land q) \rightarrow (p \lor q)$

Assumption

Elim ∧: **1.1**

Intro ∨: **1.2**

Direct Proof Rule

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1.
$$(p \rightarrow q) \land (q \rightarrow r)$$
 Assumption

1.?
$$p \rightarrow r$$

1.
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$
 Direct Proof Rule

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1.
$$(p \rightarrow q) \land (q \rightarrow r)$$
 Assumption

1.2.
$$p \rightarrow q$$
 \wedge Elim: 1.1

1.3.
$$q \rightarrow r$$
 \wedge Elim: 1.1

1.?
$$p \rightarrow r$$

1.
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$
 Direct Proof Rule

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption

1.2. $p \rightarrow q$ \land Elim: 1.1

1.3. $q \rightarrow r$ \land Elim: 1.1

1.4.1. p Assumption

1.4. $p \rightarrow r$

Direct Proof Rule

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof Rule

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption

1.2. $p \rightarrow q$ \land Elim: 1.1

1.3. $q \rightarrow r$ \land Elim: 1.1

1.4.1. p Assumption

1.4.2. q MP: 1.2, 1.4.1

1.4.3. r MP: 1.3, 1.4.2

1.4. $p \rightarrow r$ Direct Proof Rule

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof Rule

Inference Rules for Quantifiers: First look

P(c) for some c
$$\therefore \exists x P(x)$$

Elim
$$\forall$$
 \forall $x P(x)$

$$\therefore P(a) \text{ (for any a)}$$

Let a be arbitrary*"...P(a)

∴
$$\forall x P(x)$$

 $\exists x P(x)$ Elim 3 ∴ P(c) for some special** c

* in the domain of P

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW name!

Predicate Logic Proofs

- Can use
 - Predicate logic inference rules whole formulas only
 - Predicate logic equivalences (De Morgan's)
 even on subformulas
 - Propositional logic inference rules whole formulas only
 - Propositional logic equivalences
 even on subformulas

$$\begin{array}{c}
\forall x \ P(x) \\
\therefore \ P(a) \text{ for any } a
\end{array}$$

Prove
$$(\forall x P(x)) \rightarrow (\exists x P(x))$$

The main connective is implication so Direct Proof Rule seems good

$$5. (\forall x P(x)) \rightarrow (\exists x P(x))$$

$$\begin{array}{c}
 P(c) \text{ for some c} \\
 \vdots \quad \exists x P(x)
\end{array}$$

$$\frac{\forall x P(x)}{\therefore P(a) \text{ for any } a}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

$$1.5. \quad \exists x P(x)$$

1.
$$\forall x P(x) \rightarrow \exists x P(x)$$
 Direct Proof Rule

$$\frac{\forall x \ P(x)}{\therefore \ P(a) \ \text{for any } a}$$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.5. $\exists x P(x)$

Intro ∃: ?

That requires P(c) for some c.

$$\frac{\forall x P(x)}{\therefore P(a) \text{ for any } a}$$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$

- **Assumption**
- 1.2. Let α be an object.

1.5. $\exists x P(x)$

Intro ∃: ?

$$\begin{array}{c}
 P(c) \text{ for some c} \\
 \vdots \quad \exists x P(x)
\end{array}$$

$$\frac{\forall x \ P(x)}{\therefore \ P(a) \ \text{for any } a}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

1.1. $\forall x P(x)$

- Assumption
- 1.2. Let α be an object.

- 1.4. P(a)
- **1.5.** $\exists x P(x)$

?

Intro ∃: **1.4**

$$\frac{\forall x P(x)}{\therefore P(a) \text{ for any } a}$$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$

Assumption

1.2. Let α be an object.

1.4. P(a)

Elim ∀: 1.1

1.5. $\exists x P(x)$

Intro ∃: **1.4**

P(c) for some c
$$\therefore \exists x P(x)$$

$$\frac{\forall x P(x)}{\therefore P(a) \text{ for any } a}$$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$ Assumption

1.2. Let α be an object.

1.3. P(a) Elim \forall : 1.1

1.4. $\exists x P(x)$ Intro \exists : **1.3**

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof Rule

Working forwards as well as backwards:

In applying "Intro ∃" rule we didn't know what expression we might be able to prove P(c) for, so we worked forwards to figure out what might work.

Predicate Logic Proofs with more content

- In propositional logic we could just write down other propositional logic statements as "givens"
- Here, we also want to be able to use domain knowledge so proofs are about something specific
- Example: Domain of Discourse Integers
- Given the basic properties of arithmetic on integers, define:

 Predicate Definitions

Even(x) :=
$$\exists y (x = 2 \cdot y)$$

Odd(x) := $\exists y (x = 2 \cdot y + 1)$

A Not so Odd Example

Domain of Discourse Integers

Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$

 $Odd(x) := \exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x \; \text{Even}(x)$

A Not so Odd Example

Domain of Discourse

Integers

Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$

 $Odd(x) := \exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x \; Even(x)$

- 1. $2 = 2 \cdot 1$ Algebra
- **2.** $\exists y (2 = 2 \cdot y)$ Intro $\exists : 1$
- 3. Even(2) Definition of Even: 2
- 4. $\exists x \, \text{Even}(x)$ Intro $\exists : 3$

A Prime Example

Domain of Discourse Integers

Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$

 $Odd(x) := \exists y (x = 2 \cdot y + 1)$

Prime(x) := "x > 1 and $x \ne a \cdot b$ for

all integers a, b with 1<a<x"

Prove "There is an even prime number"

A Prime Example

Domain of Discourse Integers

Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$

 $Odd(x) := \exists y (x = 2 \cdot y + 1)$

Prime(x) := "x > 1 and $x \ne a \cdot b$ for

all integers a, b with 1<a<x"

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

1. 2 = 2.1 Algebra

2. $\exists y (2 = 2 \cdot y)$ Intro $\exists : 1$

3. Even(2) Def of Even: 3

4. Prime(2)* Property of integers

5. Even(2) \wedge Prime(2) Intro \wedge : 2, 4

6. $\exists x (Even(x) \land Prime(x))$ Intro $\exists : 5$

^{*} Later we will further break down "Prime" using quantifiers to prove statements like this

Inference Rules for Quantifiers: First look

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c|c}
 & \forall x P(x) \\
 & \therefore P(a) \text{ for any } a
\end{array}$$

Intro \forall "Let a be arbitrary*"...P(a)

∴ $\forall x P(x)$ * in the domain of P

 $\exists x P(x)$ ∴ P(c) for some special** c

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW name!

Even(x) := $\exists y \ (x=2y)$ Odd(x) := $\exists y \ (x=2y+1)$ Domain: Integers

Prove: "The square of any even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

Even(x) := $\exists y \ (x=2y)$ Odd(x) := $\exists y \ (x=2y+1)$ Domain: Integers



Prove: "The square of any even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

- 2. Even(a) \rightarrow Even(a²)
- 3. $\forall x (Even(x) \rightarrow Even(x^2))$

Intro \forall : 1,2

Even(x) := $\exists y \ (x=2y)$ Odd(x) := $\exists y \ (x=2y+1)$

Domain: Integers

Prove: "The square of any even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

2.1 Even(a)

Assumption

?

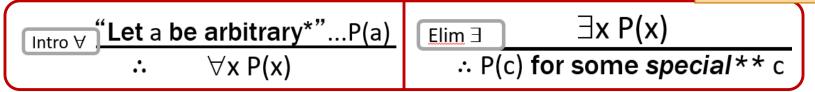
- 2. Even(a) \rightarrow Even(a²)
- 3. $\forall x (Even(x) \rightarrow Even(x^2))$

Direct proof rule

Intro \forall : 1,2

Even(x) := $\exists y \ (x=2y)$ Odd(x) := $\exists y \ (x=2y+1)$

Domain: Integers



Prove: "The square of any even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

- 1. Let a be an arbitrary integer
 - **2.1** Even(a)

Assumption

2.2 $\exists y (a = 2y)$

Definition of Even

2.5
$$\exists y (a^2 = 2y)$$

?

2.6 Even(a²)

Definition of Even

2. Even(a) \rightarrow Even(a²)

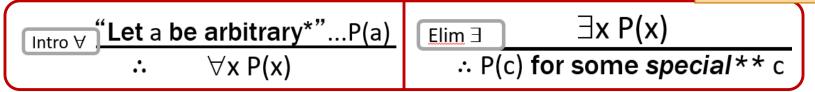
Direct proof rule

3. $\forall x (Even(x) \rightarrow Even(x^2))$

Intro ∀: 1,2

Even(x) := $\exists y \ (x=2y)$ Odd(x) := $\exists y \ (x=2y+1)$

Domain: Integers



Prove: "The square of any even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

- 1. Let a be an arbitrary integer
 - 2.1 Even(a) Assumption
 - 2.2 $\exists y (a = 2y)$ Definition of Even

2.5
$$\exists y (a^2 = 2y)$$

Intro∃rule: 🕐

Need $a^2 = 2c$ for some c

2.6 Even(**a**²)

Definition of Even

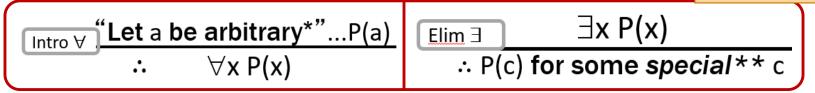
- Direct proof rule
- 3. $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

2. Even(a) \rightarrow Even(a²)

Intro ∀: 1,2

Even(x) := $\exists y \ (x=2y)$ Odd(x) := $\exists y \ (x=2y+1)$

Domain: Integers



Prove: "The square of any even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

2.2
$$\exists y (a = 2y)$$
 Definition of Even

2.3
$$a = 2b$$
 Elim \exists : b special depends on a

Intro \exists rule: (?)

Direct proof rule

2.5
$$\exists y (a^2 = 2y)$$

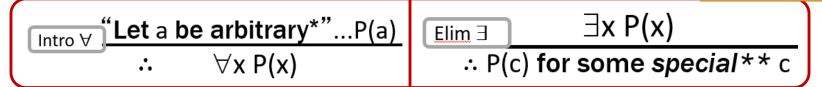
2. Even(a)
$$\rightarrow$$
Even(a²)

3.
$$\forall x (Even(x) \rightarrow Even(x^2))$$
 Intro $\forall : 1,2$

Need
$$a^2 = 2c$$
 for some c

Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$ Domain: Integers

Used $a^2 = 2c$ for $c=2b^2$



Prove: "The square of any even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

2.2
$$\exists y (a = 2y)$$
 Definition of Even

2.3
$$a = 2b$$
 Elim \exists : b special depends on a

2.4
$$a^2 = 4b^2 = 2(2b^2)$$
 Algebra

2.5
$$\exists y (a^2 = 2y)$$
 Intro \exists rule

2. Even(a)
$$\rightarrow$$
Even(a²) Direct proof rule

3.
$$\forall x (Even(x) \rightarrow Even(x^2))$$
 Intro $\forall : 1,2$

Why did we need to say that **b** depends on **a**?

There are extra conditions on using these rules:

Let a be arbitrary*"...P(a)

∴
$$\forall x \ P(x)$$

* in the domain of P

Elim∃ $\exists x \ P(x)$

∴ $P(c) \ \text{for some } special** c$

** c has to be a NEW name.

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim \exists : b special depends on a
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Why did we need to say that **b** depends on **a**?

There are extra conditions on using these rules:

Let a be arbitrary*"...P(a)

∴
$$\forall x \ P(x)$$

* in the domain of P

Elim∃ $\exists x \ P(x)$

∴ $P(c) \ \text{for some } special** c$

** c has to be a NEW name.

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

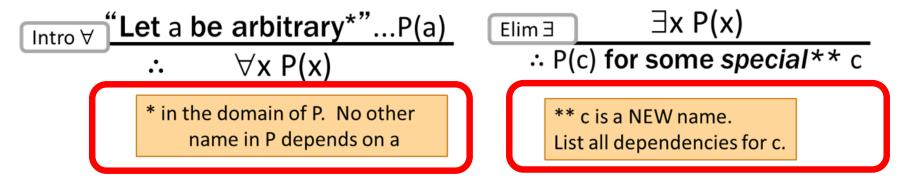
BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim \exists : b special depends on a
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Can't get rid of a since another name in the same line, b, depends on it!

Why did we need to say that **b** depends on **a**?

There are extra conditions on using these rules:



Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

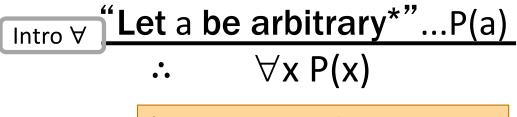
- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim \exists : b special depends on a
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Can't get rid of a since another name in the same line, b, depends on it!

Inference Rules for Quantifiers: Full version

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c|c}
 & \forall x P(x) \\
 & \therefore P(a) \text{ for any } a
\end{array}$$



* in the domain of P. No other name in P depends on a

Elim $\exists x P(x)$

∴ P(c) for some special** c

** c is a NEW name. List all dependencies for c.

English Proofs

- We often write proofs in English rather than as fully formal proofs
 - They are more natural to read

- English proofs follow the structure of the corresponding formal proofs
 - Formal proof methods help to understand how proofs really work in English...
 - ... and give clues for how to produce them.