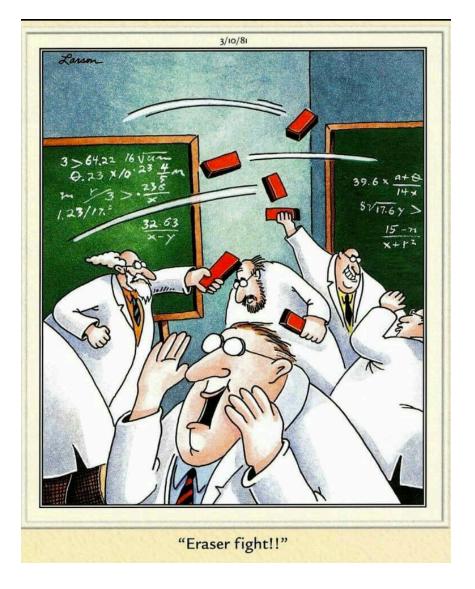
CSE 311: Foundations of Computing

Lecture 7: Logical Inference



• Variables are bound *within an expression* if there is an earlier declaration of the variable

```
float totalArea(float[] radii) {
   float sum = 0;
   for (int j = 0; j < radii.length; j++) {
      sum += 2 * PI * radii[j];
   }
   return sum;
}</pre>
```

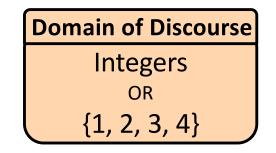
Bound variable names don't matter

 $\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)$

- Positions of quantifiers can <u>sometimes</u> change $\forall x (Q(x) \land \exists y P(x, y)) \equiv \forall x \exists y (Q(x) \land P(x, y))$
- But: order is important...

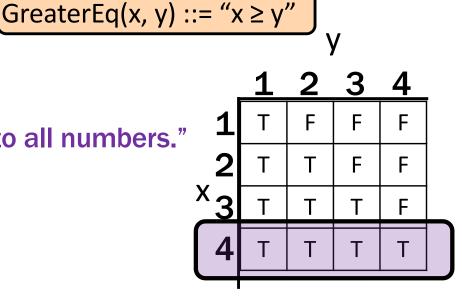
Last class: Quantifier Order Can Matter

Predicate Definitions

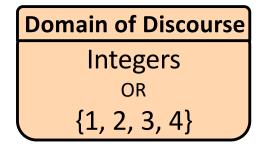


"There is a number greater than or equal to all numbers."

 $\exists x \forall y \text{ GreaterEq}(x, y)$



Last class: Quantifier Order Can Matter



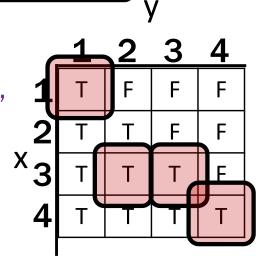
Predicate Definitions GreaterEq(x, y) ::= " $x \ge y$ "

"There is a number greater than or equal to all numbers."

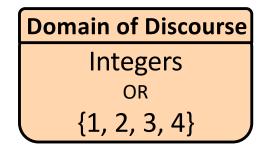
 $\exists x \forall y \text{ GreaterEq}(x, y)$

"Every number has a number greater than or equal to it."

∀y∃x GreaterEq(x, y)



Quantifier Order Can Matter



Predicate Definitions GreaterEq(x, y) ::= " $x \ge y$ "

"There is a number greater than or equal to all numbers."

 $\exists x \forall y \text{ GreaterEq}(x, y)$

"Every number has a number greater than or equal to it."

∀y∃x GreaterEq(x, y)

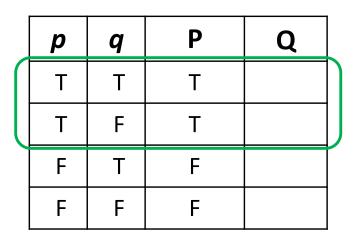
The purple statement requires **an entire row** to be true. The red statement requires one entry in **each column** to be true.

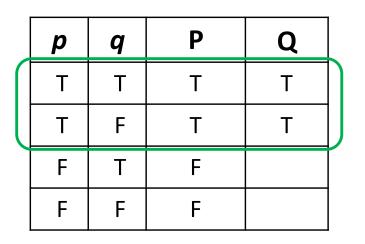
Important: both include the case x = y

Different names does not imply different objects!

У

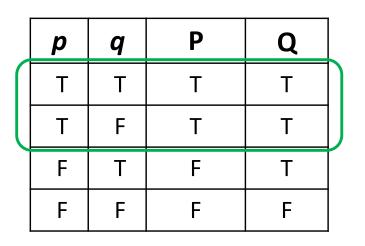
- So far we've considered:
 - How to understand and express things using propositional and predicate logic
 - How to compute using Boolean (propositional) logic
 - How to show that different ways of expressing or computing them are *equivalent* to each other
- Logic also has methods that let us *infer* implied properties from ones that we know
 - Equivalence is a small part of this



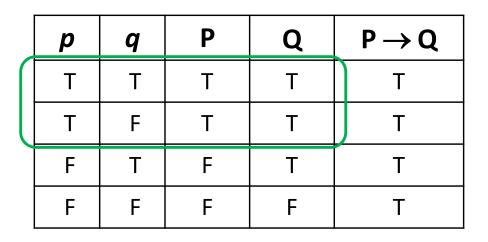


Given that P is true, we see that Q is also true.

 $P \Rightarrow Q$



When we step back, what have we proven?



When we step back, what have we proven?

 $(\mathsf{P} \to \mathsf{Q}) \equiv \mathbf{T}$

Equivalences

 $P \equiv Q$ and $(P \leftrightarrow Q) \equiv T$ are the same

Inference

 $P \Rightarrow Q$ and $(P \rightarrow Q) \equiv T$ are the same

Can do the inference by zooming in to the rows where **P** is true

Applications of Logical Inference

- Software Engineering
 - Express desired properties of program as set of logical constraints
 - Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

- Start with given facts (hypotheses)
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

- If A and $A \rightarrow B$ are both true, then B must be true
- Write this rule as $A : A \to B$ $\therefore B$
- Given:
 - If it is Wednesday, then you have a 311 class today.
 - It is Wednesday.
- Therefore, by Modus Ponens:
 - You have a 311 class today.

Show that **r** follows from **p**, **p** \rightarrow **q**, and **q** \rightarrow **r**

1.	p	Given
2.	p ightarrow q	Given
3.	$q \rightarrow r$	Given
4.		
5.		

Modus Ponens
$$A : A \to B$$

 $\therefore B$

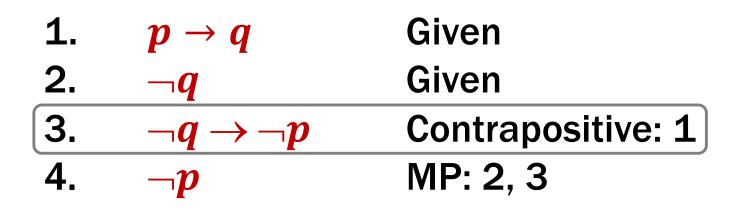
Show that **r** follows from **p**, **p** \rightarrow **q**, and **q** \rightarrow **r**

1.pGiven2. $p \rightarrow q$ Given3. $q \rightarrow r$ Given4.qMP: 1, 25.rMP: 3, 4

Modus Ponens
$$A ; A \rightarrow B$$

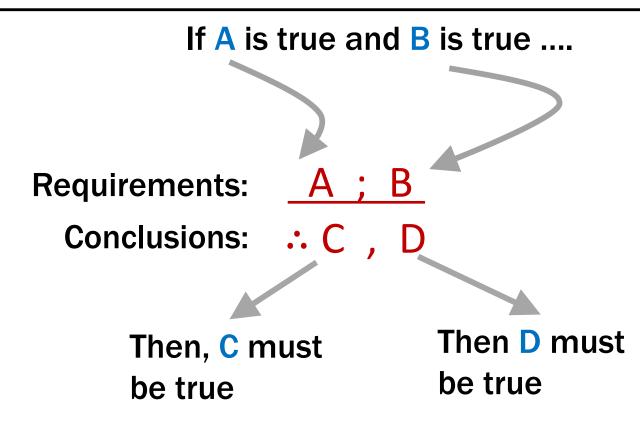
 $\therefore B$

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$



Modus Ponens
$$A : A \to B$$

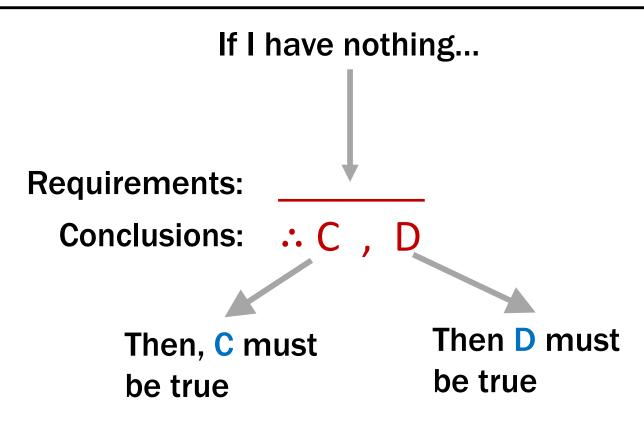
 $\therefore B$



Example (Modus Ponens):

If I have A and $A \rightarrow B$ both true, Then B must be true.

Axioms: Special inference rules



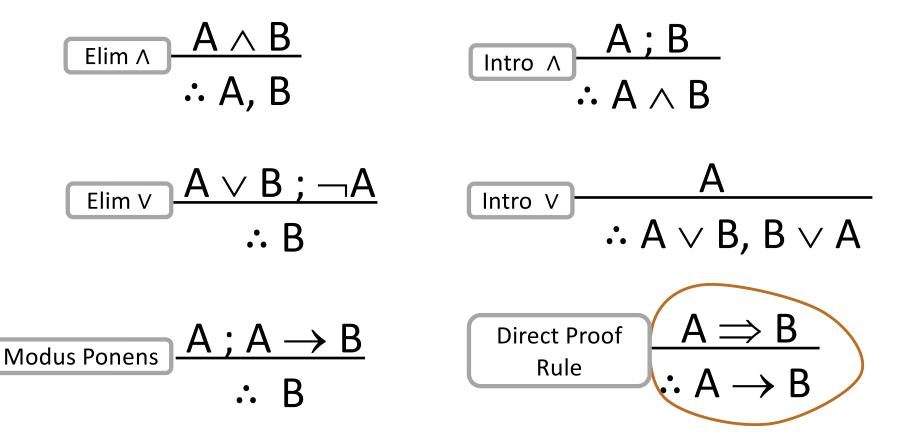
Example (Excluded Middle):

 $\therefore A \lor \neg A$

 $A \lor \neg A$ must be true.

Simple Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it



Not like other rules

Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$ and $(\mathbf{p} \land \mathbf{q}) \rightarrow \mathbf{r}$

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

$$\frac{A ; A \rightarrow B}{\therefore B}$$

 $\frac{A \land B}{\therefore A, B}$

<u>A;B</u> ∴A∧B Show that **r** follows from $p, p \rightarrow q$, and $p \land q \rightarrow r$

Two visuals of the same proof. We will use the top one, but if the bottom one helps you think about it, that's great!

$$p ; p \rightarrow q \text{MP}$$

$$p ; q \text{MP}$$

$$p \wedge q ; p \wedge q \rightarrow r$$

$$r \text{MP}$$

1.	p	Given
2.	p ightarrow q	Given
3.	<i>q</i>	MP: 1, 2
4.	$\boldsymbol{p} \wedge \boldsymbol{q}$	Intro \: 1, 3
5.	$p \land q \rightarrow r$	Given
6	r	MP·4 5

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

First: Write down givens and goal

Idea: Work backwards!

1.	$p \wedge s$	Given
2.	$oldsymbol{q} ightarrow eg r$	Given
3.	$\neg s \lor q$	Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim →" which is MP.

MP: 2, ?

20. ¬*r*

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

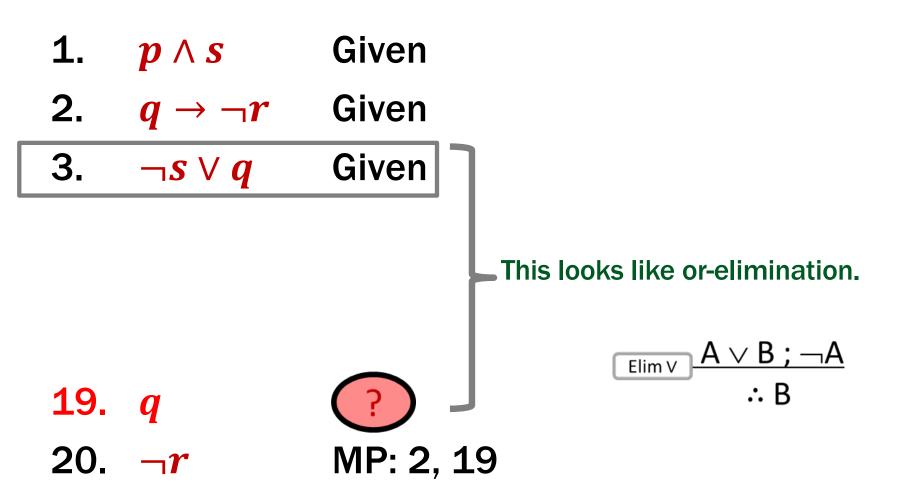
Idea: Work backwards!

We want to eventually get $\neg r$. How?

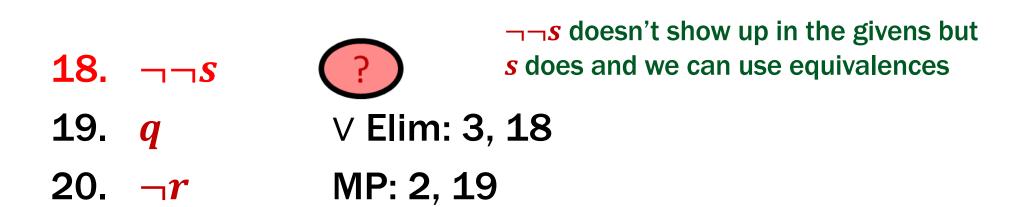
- Now, we have a new "hole"
- We need to prove *q*...
 - Notice that at this point, if we prove *q*, we've proven ¬*r*...

```
      19. q
      ?

      20. ¬r
      MP: 2, 19
```



- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given



1. $p \wedge s$ 2. $q \rightarrow \neg r$	Given Given
3. <i>¬s∨q</i>	Given
17. s 18. $\neg \neg s$ 19. q 20. $\neg r$? Double Negation: 17 ∨ Elim: 3, 18 MP: 2, 19

1.	$p \wedge s$	Given	No holes left! We just
2.	$q ightarrow \neg r$	Given	need to clean up a bit.
3.	$\neg s \lor q$	Given	
17.	S	∧ Elim: 1	
18.	רר <i>S</i>	Double Negation	: 17
19.	q	∨ Elim: 3, 18	
20.	$\neg r$	MP: 2, 19	

1.	$p \wedge s$	Given
2.	$q ightarrow \neg r$	Given
3.	$\neg s \lor q$	Given
4.	S	∧ Elim: 1
5.	רר S	Double Negation: 4
6.	q	∨ Elim: 3, 5
7.	$\neg r$	MP: 2, 6

Important: Applications of Inference Rules

- You can use equivalences to make substitutions of any sub-formula.
- Inference rules only can be applied to whole formulas (not correct otherwise).

e.g. 1.
$$p \rightarrow r$$
 given
2. $(p \lor q) \rightarrow r$ intro \lor from 1.

Does not follow! e.g. p=F, q=T, r=F

To Prove An Implication: $A \rightarrow B$

$$A \Rightarrow B$$

 $\therefore A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" A ⇒ B for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

To Prove An Implication: $A \rightarrow B$

$$A \Rightarrow B$$

 $\therefore A \rightarrow B$

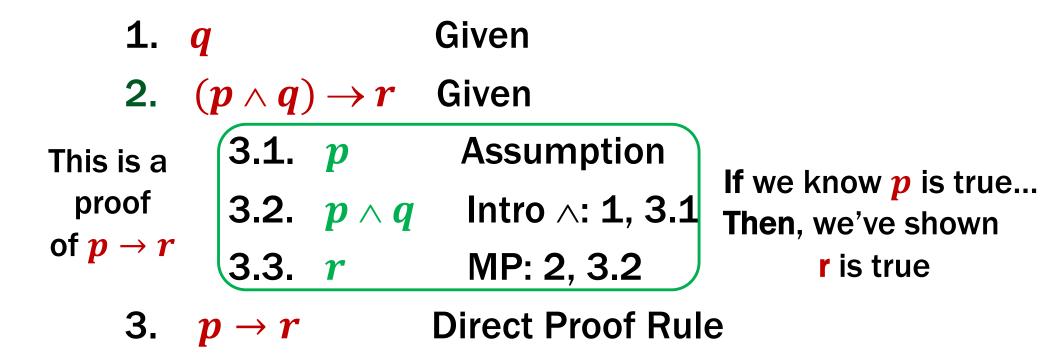
- We use the direct proof rule
- The "pre-requisite" A ⇒ B for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude

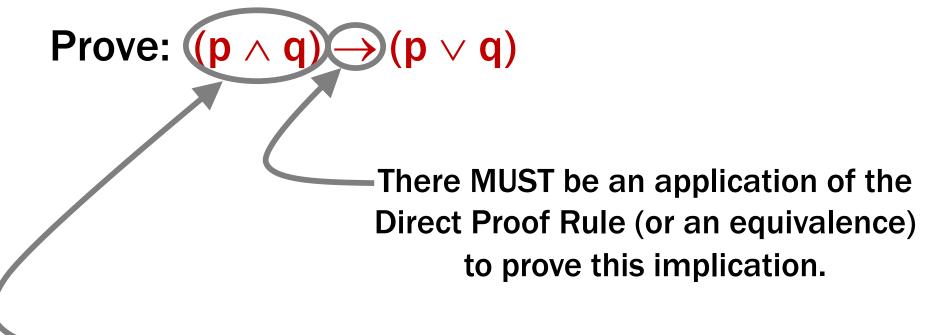
that $A \rightarrow B$ is true

Example:	Prove $\mathbf{p} \rightarrow (\mathbf{p} \lor \mathbf{q})$.	proof subroutine
Indent proof	1.1. <i>p</i>	Assumption
subroutine \rightarrow	1.2. <i>p</i> ∨ <i>q</i>	Intro ∨: 1
1.	$p \rightarrow (p \lor q)$	Direct Proof Rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$



Example



Where do we start? We have no givens...

Prove: $(p \land q) \rightarrow (p \lor q)$

Prove: $(p \land q) \rightarrow (p \lor q)$

1.1. $p \land q$ 1.2. p1.3. $p \lor q$ 1. $(p \land q) \rightarrow (p \lor q)$

Assumption Elim ∧: 1.1 Intro ∨: 1.2 Direct Proof Rule

- Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.