CSE 311: Foundations of Computing

Lecture 6: More Predicate Logic

THREE LOGICIANS WALK INTO A BAR...
DOES EVERYONE

WANT BEER?

Last class

Canonical Forms
— sum-of-products and product-of-sums
— both are useful

Corollaries of construction:
— any function can be formed with just —, v, A

— actually, just —, v (De Morgan’s laws)

— actually, just A (HW1 Q4)
NAND and NOR also have this property

Last class: Predicates

Predicate
— A function that returns a truth value, e.g.,

Cat(x) ::= “x is a cat”

Prime(x) ::= “x is prime”

HasTaken(x, y) ::= “student x has taken course y”
LessThan(x, y) ::= “x<y”

Sum(x, vy, z) = “x+y=2"

GreaterThan5(x) ::= “x > 5"

HasNChars(s, n) ::= “string s has length n”

Predicates can have varying numbers of arguments
and input types.

Last class: Domain of Discourse

For ease of use, we define one “type”/“domain” that we
work over. This non-empty set of objects is called the
“domain of discourse”.

For each of the following, what might the domain be?
(1) “x is a cat”, “x barks”, “x ruined my couch”

“mammals” or “sentient beings” or “cats and dogs” or ...

(2) “x is prime”, “x =07, “x < 07, “x is a power of two”
“numbers” or “integers” or “integers greater than 5” or ...

(3) “x is a pre-req for z”

“courses”

Quantifiers

We use quantifiers to talk about collections of objects.

Vx P(x) I @)

P(x) is true for every x in the domain QUANTIFIEN
read as “for all x, P of x”

3x P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Statements with Quantifiers

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>y”

| Positive Integers | Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
(Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y =2")

Determine the truth values of each of these statements:

dx Even(x) T eg2,4,606,..

Vx Odd(x) F eg.246,..

Vx (Even(x) v Odd(x)) T everyinteger is either even or odd
Ix (Even(x) A Odd(x)) F nointeger is both even and odd
Vx Greater(x+1, x) T adding 1 makes a bigger number

dx (Even(x) A Prime(x)) T Even(2) is true and Prime(2) is true

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>y”
| Positive Integers | Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
(Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y =2")

Translate the following statements to English

Vx dy Greater(y, x)

For every positive integer X, there is a positive integer y, such thaty > x.
dy Vx Greater(y, x)

There is a positive integer y such that, for every pos. int. X, we have y > x.
Vx 4y (Greater(y, x) A Prime(y))

For every positive integer X, there is a pos. int. y such thaty > x and y is prime.

Vx (Prime(x) = (Equal(x, 2) v Odd(x)))

For each positive integer x, if x is prime, then x = 2 or x is odd.

dx dy (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist positive integers x and y such that x + 2 =y and x and y are prime.

Statements with Quantifiers (Natural Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>y”

| Positive Integers | Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
(Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y =2")

Translate the following statements to English

Vx dy Greater(y, x)

For every positive integer, there is a larger positive integer.
dy Vx Greater(y, x)

There is a positive integer that is larger than every other positive integer.
Vx 4y (Greater(y, x) A Prime(y))

For every positive integer, there is a prime that is larger.

Vx (Prime(x) = (Equal(x, 2) v Odd(x)))

Every prime number is either 2 or odd.

dx Jy (Prime(x) A Prime(y) A Sum(x, 2, y))

There exist prime numbers that differ by two.

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “xis a cat”

Mammals | Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”)

“All red cats like tofu”

VX ((Red(x) A Cat(x)) — LikesTofu(x))

“‘Some red cats don’t like tofu”

1y ((Red(y) A Cat(y)) A —LikesTofu(y))

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “xis a cat”

Mammals | Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”)

\

—

When putting two predicates together like this, we
‘ use an “and”.

When restricting to a smaller
domain in a “for all” we use

“All Red cats like tofu” «

implication.
4 When restricting to a smaller
“Some red cats don’t like tofu” — domain in an “exists” we use
and.

“‘Some” means “there exists”.

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “xis a cat”

Mammals | Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”)

“Red cats like tofu”

When there’s no leading
quantification, it means “for all”.

“A red cat doesn’t like tofu”

“A” means “there exists”.

Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit”

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition! Which one “feels” right?

Key Idea: In every domain, exactly one of a
statement and its negation should be true.

Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit”

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Key Idea: In every domain, exactly one of a
statement and its negation should be true.

Domain of Discourse Domain of Discourse Domain of Discourse

{plum}) | {apple} J . {plum, apple}

(*), (@) (b), (c) (a), (b)

Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit”

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Key Idea: In every domain, exactly one of a
statement and its negation should be true.

Domain of Discourse Domain of Discourse Domain of Discourse
{plum}) | {apple} J . {plum, apple}
(*), (@) (b), (c) (a), (b)

The only choice that ensures exactly one of the statement and its negation is (b).

De Morgan’s Laws for Quantifiers

—Vx P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

De Morgan’s Laws for Quantifiers

—Vx P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

“There is no integer larger than every other integer”

—dxVy (x2y)
= VXx—=Vy (x2y)
=Vxdy—=(x2y)
Vx 3dy (y>x)

“For every integer, there is a larger integer”

Scope of Quantifiers

Ix (P(x) A Q(x)) vs. dx P(x) A dx Q(x)

scope of quantifiers

Ix (P(x) A Q(x)) vs. dxP(x) A dx Q(x)

This one asserts P This one asserts P and Q
and Q of the same x. of potentially different x’s.

Variables with the same name do not
necessarily refer to the same object.

Scope of Quantifiers

Example: Notlargest(x) ::= 3y Greater (y, x)
= 1z Greater (z, x)

truth value:

doesn’t depend on y or z “bound variables”
does depend on X “free variable”

qguantifiers only act on free variables of the formula
they quantify

vV x (3 y (P(xy) = V xQy, x)))

Quantifier “Style”

vV x (Jy (P(x,y) = ¥ xQ(y, x)))

This isn’t “wrong’, it's just horrible style.
Don’t confuse your reader by using the same
variable multiple times...there are a lot of letters...

Nested Quantifiers

e Bound variable names don’t matter
Vx dy P(x, y) = Va db P(a, b)

* Positions of quantifiers can sometimes change
Vx (Q(x) A Jy P(x, y)) = Vx Jy (Q(x) A P(x, y))

 But: orderis important...

Quantifier Order Can Matter

Domain of Discourse

Predicate Definitions

Integers
OR

_ {1; 2) 3) 4} W,

“There is a number greater than or equal to all numbers.”

dx Yy GreaterEq(x, y)))

Greaterkq(x, y) ::= “x2y”

I R

A== 4=

=l Rl)

=1 Rl Bl (°8)

A0S

Quantifier Order Can Matter

Domain of Discourse

Integers
OR

_ {1; 2) 3) 4} Y,

“There is a number greater than or equal to all numbers.”

dx Yy GreaterEq(x, y)))

“Every number has a number greater than or equal to it.”

Predicate Definitions

Greaterkq(x, y) ::= “x2y”

X

W

Yy dx GreaterEq(x, vy)))

Quantifier Order Can Matter

Domain of Discourse

Integers
OR
_ {1; 2) 3) 4} W,
“There is a number greater than or equal to all numbers.” 5
dx Yy GreaterEq(x, y))) E}
“Every number has a number greater than or equal to it.” 4

Predicate Definitions

Greaterkq(x, y) ::= “x2y”

Yy dx GreaterEq(x, vy)))

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

(

\.

Important: both include the case x=y

Different names does not imply different objects!

~\

J

Quantification with Two Variables

expression

when true

when false

Vx YV yP(x,y)

Every pair is true.

At least one pair is false.

dx 3y P(x,y)

At least one pair is true.

All pairs are false.

vV x3dyP(x,vy)

We can find a specific y for
each x.

(X1, Y1), (X2, ¥2), (X3, ¥3)

Some x doesn’t have a
corresponding y.

dy V xP(x, y)

We can find ONE y that
works no matter what x is.

(X1; Y), (XZI Y), (X3, y)

For any candidate y, there is
an x that it doesn’t work for.

Logical Inference

e So far we've considered:

— How to understand and express things using
propositional and predicate logic

— How to compute using Boolean (propositional) logic

— How to show that different ways of expressing or
computing them are equivalent to each other

* Logic also has methods that let us infer implied
properties from ones that we know

— Equivalence is a small part of this

Applications of Logical Inference

Software Engineering

— EXxpress desired properties of program as set of logical
constraints

— Use inference rules to show that program implies that
those constraints are satisfied

Artificial Intelligence

— Automated reasoning

Algorithm design and analysis

— e.g., Correctness, Loop invariants.

Logic Programming, e.g. Prolog

— EXxpress desired outcome as set of constraints

— Automatically apply logic inference to derive solution

