
CSE 311: Foundations of Computing

Lecture 6:  More Predicate Logic



Canonical Forms
– sum-of-products and product-of-sums
– both are useful

Corollaries of construction:
– any function can be formed with just ¬, Ú, Ù
– actually, just ¬, Ú (De Morgan’s laws)
– actually, just A (HW1 Q4)

NAND and NOR also have this property

Last class



Predicate
– A function that returns a truth value, e.g.,

Cat(x) ::= “x is a cat”
Prime(x) ::= “x is prime”
HasTaken(x, y) ::= “student x has taken course y”
LessThan(x, y) ::= “x < y”
Sum(x, y, z) ::= “x + y = z”
GreaterThan5(x) ::= “x > 5”
HasNChars(s, n) ::= “string s has length n”

Predicates can have varying numbers of arguments 
and input types.   

Last class: Predicates



Last class: Domain of Discourse

For ease of use, we define one “type”/“domain” that we 
work over.  This non-empty set of objects is called the 
“domain of discourse”.

For each of the following, what might the domain be?
(1) “x is a cat”, “x barks”, “x ruined my couch”

(2) “x is prime”, “x = 0”, “x < 0”, “x is a power of two”

(3) “x is a pre-req for z”

“mammals” or “sentient beings” or “cats and dogs” or …

“numbers” or “integers” or “integers greater than 5” or …

“courses”



Quantifiers

We use quantifiers to talk about collections of objects.

"x P(x)
P(x) is true for every x in the domain

read as “for all x, P of x”

$x P(x) 
There is an x in the domain for which P(x) is true

read as “there exists x, P of x”



Statements with Quantifiers

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

$x Even(x)

"x Odd(x)

"x (Even(x) Ú Odd(x))

$x (Even(x) Ù Odd(x))

"x Greater(x+1, x)

$x (Even(x) Ù Prime(x))

Determine the truth values of each of these statements:

T e.g. 2, 4, 6, ...

F e.g. 2, 4, 6, ...

T      every integer is either even or odd

F      no integer is both even and odd

T      adding 1 makes a bigger number

T      Even(2) is true and Prime(2) is true



Statements with Quantifiers (Literal Translations)

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

"x $y Greater(y, x)

$y "x Greater(y, x)

"x $y (Greater(y, x) Ù Prime(y))

"x (Prime(x) ® (Equal(x, 2) Ú Odd(x)))

$x $y (Sum(x, 2, y) Ù Prime(x) Ù Prime(y)) 

Translate the following statements to English

For every positive integer x, there is a positive integer y, such that y > x.

There is a positive integer y such that, for every pos. int. x, we have y > x.

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

For each positive integer x, if x is prime, then x = 2 or x is odd.

There exist positive integers x and y such that x + 2 = y and x and y are prime.



Statements with Quantifiers (Natural Translations)

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

"x $y Greater(y, x)

$y "x Greater(y, x)

"x $y (Greater(y, x) Ù Prime(y))

"x (Prime(x) ® (Equal(x, 2) Ú Odd(x)))

$x $y (Prime(x) Ù Prime(y) Ù Sum(x, 2, y)) 

Translate the following statements to English

For every positive integer, there is a larger positive integer.

There is a positive integer that is larger than every other positive integer.

For every positive integer, there is a prime that is larger.

Every prime number is either 2 or odd.

There exist prime numbers that differ by two.



English to Predicate Logic

“All red cats like tofu” 

“Some red cats don’t like tofu” 

Cat(x) ::= “x is a cat”
Red(x) ::= “x is red”
LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse

"x ((Red(x) Ù Cat(x)) ® LikesTofu(x))

$y ((Red(y) Ù Cat(y)) Ù ¬LikesTofu(y))



“All Red cats like tofu” 

“Some red cats don’t like tofu” 

English to Predicate Logic

Cat(x) ::= “x is a cat”
Red(x) ::= “x is red”
LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse

“Some” means “there exists”.

When putting two predicates together like this, we 
use an “and”.

When restricting to a smaller 
domain in a “for all” we use 
implication.

When restricting to a smaller 
domain in an “exists” we use 
and.



“Red cats like tofu” 

“A red cat doesn’t like tofu” 

English to Predicate Logic

Cat(x) ::= “x is a cat”
Red(x) ::= “x is red”
LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse

When there’s no leading 
quantification, it means “for all”.

“A” means “there exists”.



Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”
Predicate Definitions

(*) "x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition!  Which one “feels” right?

Key Idea: In every domain, exactly one of a 
statement and its negation should be true.



Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”
Predicate Definitions

(*) "x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Key Idea: In every domain, exactly one of a 
statement and its negation should be true.

{plum}
Domain of Discourse

{apple}
Domain of Discourse

{plum, apple}
Domain of Discourse

(*), (a) (b), (c) (a), (b)



Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”
Predicate Definitions

(*) "x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Key Idea: In every domain, exactly one of a 
statement and its negation should be true.

{plum}
Domain of Discourse

{apple}
Domain of Discourse

{plum, apple}
Domain of Discourse

(*), (a) (b), (c) (a), (b)

The only choice that ensures exactly one of the statement and its negation is (b).



De Morgan’s Laws for Quantifiers

¬"x P(x) º $x ¬ P(x)
¬ $x P(x) º "x ¬ P(x)



De Morgan’s Laws for Quantifiers

¬ $ x " y  ( x ≥ y)
º " x ¬ "y  ( x ≥ y)
º " x  $ y ¬ ( x ≥ y)
º " x  $ y  (y > x)

“There is no integer larger than every other integer”

“For every integer, there is a larger integer”

¬"x P(x) º $x ¬ P(x)
¬ $x P(x) º "x ¬ P(x)



Scope of Quantifiers

$x  (P(x) Ù Q(x)) vs. $x P(x) Ù $x Q(x)



scope of quantifiers

$x (P(x) Ù Q(x)) vs. $x P(x) Ù $x Q(x)

This one asserts P 
and Q of the same x.

This one asserts P and Q 
of potentially different x’s.

Variables with the same name do not 
necessarily refer to the same object.



Scope of Quantifiers

Example: NotLargest(x) ::= $ y Greater (y, x)                            
º $ z Greater (z, x)

truth value:

doesn’t depend on y or z “bound variables”
does depend on x “free variable”

quantifiers only act on free variables of the formula 
they quantify

" x ($ y (P(x,y) ®" x Q(y, x)))



" x ($y (P(x,y) ®" x Q(y, x)))

Quantifier “Style”

This isn’t “wrong”, it’s just horrible style.
Don’t confuse your reader by using the same 
variable multiple times…there are a lot of letters…



Nested Quantifiers

• Bound variable names don’t matter

"x $y P(x, y) º "a $b P(a, b)

• Positions of quantifiers can sometimes change
"x (Q(x) Ù $y P(x, y)) º "x $y (Q(x) Ù P(x, y))

• But:   order is important...



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”
Predicate Definitions

Integers
OR

{1, 2, 3, 4}

Domain of Discourse

x

y
1   2   3   4

1
2
3
4

T F F F

T T F F

T T T F

T T T T
$x "y GreaterEq(x, y)))



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”
Predicate Definitions

Integers
OR

{1, 2, 3, 4}

Domain of Discourse

“Every number has a number greater than or equal to it.”

x

y
1   2   3   4

1
2
3
4

T F F F

T T F F

T T T F

T T T T
$x "y GreaterEq(x, y)))

"y $x GreaterEq(x, y)))



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”
Predicate Definitions

Integers
OR

{1, 2, 3, 4}

Domain of Discourse

“Every number has a number greater than or equal to it.”

x

y
1   2   3   4

1
2
3
4

T F F F

T T F F

T T T F

T T T T

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

$x "y GreaterEq(x, y)))

"y $x GreaterEq(x, y)))

Important: both include the case x = y

Different names does not imply different objects!



Quantification with Two Variables

expression when true when false

"x " y P(x, y) Every pair is true. At least one pair is false.

$ x $ y P(x, y) At least one pair is true. All pairs are false.

" x $ y P(x, y) We can find a specific y for 
each x.
(x1, y1), (x2, y2), (x3, y3)

Some x doesn’t have a 
corresponding y.

$ y " x P(x, y) We can find ONE y that 
works no matter what x is.
(x1, y), (x2, y), (x3, y)

For any candidate y, there is 
an x that it doesn’t work for.



Logical Inference

• So far we’ve considered:
– How to understand and express things using 

propositional and predicate logic
– How to compute using Boolean (propositional) logic
– How to show that different ways of expressing or 

computing them are equivalent to each other

• Logic also has methods that let us infer implied 
properties from ones that we know
– Equivalence is a small part of this



Applications of Logical Inference

• Software Engineering
– Express desired properties of program as set of logical 

constraints
– Use inference rules to show that program implies that 

those constraints are satisfied
• Artificial Intelligence
– Automated reasoning 

• Algorithm design and analysis
– e.g.,  Correctness, Loop invariants.

• Logic Programming, e.g. Prolog
– Express desired outcome as set of constraints
– Automatically apply logic inference to derive solution


