
CSE 311: Foundations of Computing

Lecture 6: More Predicate Logic

Canonical Forms
– sum-of-products and product-of-sums
– both are useful

Corollaries of construction:
– any function can be formed with just ¬, Ú, Ù
– actually, just ¬, Ú (De Morgan’s laws)
– actually, just A (HW1 Q4)

NAND and NOR also have this property

Last class

Predicate
– A function that returns a truth value, e.g.,

Cat(x) ::= “x is a cat”
Prime(x) ::= “x is prime”
HasTaken(x, y) ::= “student x has taken course y”
LessThan(x, y) ::= “x < y”
Sum(x, y, z) ::= “x + y = z”
GreaterThan5(x) ::= “x > 5”
HasNChars(s, n) ::= “string s has length n”

Predicates can have varying numbers of arguments
and input types.

Last class: Predicates

Last class: Domain of Discourse

For ease of use, we define one “type”/“domain” that we
work over. This non-empty set of objects is called the
“domain of discourse”.

For each of the following, what might the domain be?
(1) “x is a cat”, “x barks”, “x ruined my couch”

(2) “x is prime”, “x = 0”, “x < 0”, “x is a power of two”

(3) “x is a pre-req for z”

“mammals” or “sentient beings” or “cats and dogs” or …

“numbers” or “integers” or “integers greater than 5” or …

“courses”

Quantifiers

We use quantifiers to talk about collections of objects.

"x P(x)
P(x) is true for every x in the domain

read as “for all x, P of x”

$x P(x)
There is an x in the domain for which P(x) is true

read as “there exists x, P of x”

Statements with Quantifiers

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

$x Even(x)

"x Odd(x)

"x (Even(x) Ú Odd(x))

$x (Even(x) Ù Odd(x))

"x Greater(x+1, x)

$x (Even(x) Ù Prime(x))

Determine the truth values of each of these statements:

T e.g. 2, 4, 6, ...

F e.g. 2, 4, 6, ...

T every integer is either even or odd

F no integer is both even and odd

T adding 1 makes a bigger number

T Even(2) is true and Prime(2) is true

Statements with Quantifiers (Literal Translations)

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

"x $y Greater(y, x)

$y "x Greater(y, x)

"x $y (Greater(y, x) Ù Prime(y))

"x (Prime(x) ® (Equal(x, 2) Ú Odd(x)))

$x $y (Sum(x, 2, y) Ù Prime(x) Ù Prime(y))

Translate the following statements to English

For every positive integer x, there is a positive integer y, such that y > x.

There is a positive integer y such that, for every pos. int. x, we have y > x.

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

For each positive integer x, if x is prime, then x = 2 or x is odd.

There exist positive integers x and y such that x + 2 = y and x and y are prime.

Statements with Quantifiers (Natural Translations)

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

"x $y Greater(y, x)

$y "x Greater(y, x)

"x $y (Greater(y, x) Ù Prime(y))

"x (Prime(x) ® (Equal(x, 2) Ú Odd(x)))

$x $y (Prime(x) Ù Prime(y) Ù Sum(x, 2, y))

Translate the following statements to English

For every positive integer, there is a larger positive integer.

There is a positive integer that is larger than every other positive integer.

For every positive integer, there is a prime that is larger.

Every prime number is either 2 or odd.

There exist prime numbers that differ by two.

English to Predicate Logic

“All red cats like tofu”

“Some red cats don’t like tofu”

Cat(x) ::= “x is a cat”
Red(x) ::= “x is red”
LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse

"x ((Red(x) Ù Cat(x)) ® LikesTofu(x))

$y ((Red(y) Ù Cat(y)) Ù ¬LikesTofu(y))

“All Red cats like tofu”

“Some red cats don’t like tofu”

English to Predicate Logic

Cat(x) ::= “x is a cat”
Red(x) ::= “x is red”
LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse

“Some” means “there exists”.

When putting two predicates together like this, we
use an “and”.

When restricting to a smaller
domain in a “for all” we use
implication.

When restricting to a smaller
domain in an “exists” we use
and.

“Red cats like tofu”

“A red cat doesn’t like tofu”

English to Predicate Logic

Cat(x) ::= “x is a cat”
Red(x) ::= “x is red”
LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse

When there’s no leading
quantification, it means “for all”.

“A” means “there exists”.

Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”
Predicate Definitions

(*) "x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition! Which one “feels” right?

Key Idea: In every domain, exactly one of a
statement and its negation should be true.

Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”
Predicate Definitions

(*) "x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Key Idea: In every domain, exactly one of a
statement and its negation should be true.

{plum}
Domain of Discourse

{apple}
Domain of Discourse

{plum, apple}
Domain of Discourse

(*), (a) (b), (c) (a), (b)

Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”
Predicate Definitions

(*) "x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Key Idea: In every domain, exactly one of a
statement and its negation should be true.

{plum}
Domain of Discourse

{apple}
Domain of Discourse

{plum, apple}
Domain of Discourse

(*), (a) (b), (c) (a), (b)

The only choice that ensures exactly one of the statement and its negation is (b).

De Morgan’s Laws for Quantifiers

¬"x P(x) º $x ¬ P(x)
¬ $x P(x) º "x ¬ P(x)

De Morgan’s Laws for Quantifiers

¬ $ x " y (x ≥ y)
º " x ¬ "y (x ≥ y)
º " x $ y ¬ (x ≥ y)
º " x $ y (y > x)

“There is no integer larger than every other integer”

“For every integer, there is a larger integer”

¬"x P(x) º $x ¬ P(x)
¬ $x P(x) º "x ¬ P(x)

Scope of Quantifiers

$x (P(x) Ù Q(x)) vs. $x P(x) Ù $x Q(x)

scope of quantifiers

$x (P(x) Ù Q(x)) vs. $x P(x) Ù $x Q(x)

This one asserts P
and Q of the same x.

This one asserts P and Q
of potentially different x’s.

Variables with the same name do not
necessarily refer to the same object.

Scope of Quantifiers

Example: NotLargest(x) ::= $ y Greater (y, x)
º $ z Greater (z, x)

truth value:

doesn’t depend on y or z “bound variables”
does depend on x “free variable”

quantifiers only act on free variables of the formula
they quantify

" x ($ y (P(x,y) ®" x Q(y, x)))

" x ($y (P(x,y) ®" x Q(y, x)))

Quantifier “Style”

This isn’t “wrong”, it’s just horrible style.
Don’t confuse your reader by using the same
variable multiple times…there are a lot of letters…

Nested Quantifiers

• Bound variable names don’t matter

"x $y P(x, y) º "a $b P(a, b)

• Positions of quantifiers can sometimes change
"x (Q(x) Ù $y P(x, y)) º "x $y (Q(x) Ù P(x, y))

• But: order is important...

Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”
Predicate Definitions

Integers
OR

{1, 2, 3, 4}

Domain of Discourse

x

y
1 2 3 4

1
2
3
4

T F F F

T T F F

T T T F

T T T T
$x "y GreaterEq(x, y)))

Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”
Predicate Definitions

Integers
OR

{1, 2, 3, 4}

Domain of Discourse

“Every number has a number greater than or equal to it.”

x

y
1 2 3 4

1
2
3
4

T F F F

T T F F

T T T F

T T T T
$x "y GreaterEq(x, y)))

"y $x GreaterEq(x, y)))

Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”
Predicate Definitions

Integers
OR

{1, 2, 3, 4}

Domain of Discourse

“Every number has a number greater than or equal to it.”

x

y
1 2 3 4

1
2
3
4

T F F F

T T F F

T T T F

T T T T

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

$x "y GreaterEq(x, y)))

"y $x GreaterEq(x, y)))

Important: both include the case x = y

Different names does not imply different objects!

Quantification with Two Variables

expression when true when false

"x " y P(x, y) Every pair is true. At least one pair is false.

$ x $ y P(x, y) At least one pair is true. All pairs are false.

" x $ y P(x, y) We can find a specific y for
each x.
(x1, y1), (x2, y2), (x3, y3)

Some x doesn’t have a
corresponding y.

$ y " x P(x, y) We can find ONE y that
works no matter what x is.
(x1, y), (x2, y), (x3, y)

For any candidate y, there is
an x that it doesn’t work for.

Logical Inference

• So far we’ve considered:
– How to understand and express things using

propositional and predicate logic
– How to compute using Boolean (propositional) logic
– How to show that different ways of expressing or

computing them are equivalent to each other

• Logic also has methods that let us infer implied
properties from ones that we know
– Equivalence is a small part of this

Applications of Logical Inference

• Software Engineering
– Express desired properties of program as set of logical

constraints
– Use inference rules to show that program implies that

those constraints are satisfied
• Artificial Intelligence
– Automated reasoning

• Algorithm design and analysis
– e.g., Correctness, Loop invariants.

• Logic Programming, e.g. Prolog
– Express desired outcome as set of constraints
– Automatically apply logic inference to derive solution

