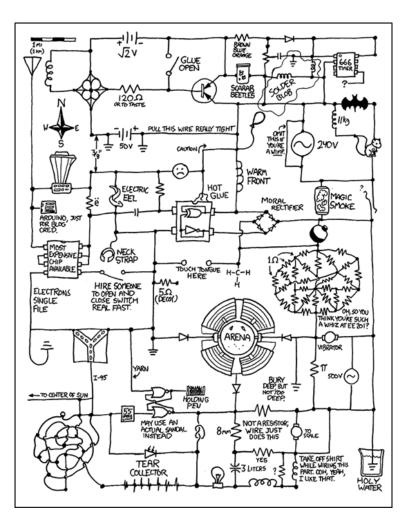
CSE 311: Foundations of Computing

Lecture 5: DNF, CNF and Predicate Logic



HW1 due tonight

HW2 posted tomorrow

- some tools available for testing equivalence chains
 - <u>http://homes.cs.washington.edu/~kevinz/equiv-test/</u>
 - another mentioned in the HW, preloaded with HW1 problems
- both are optional
 - also "beta" software

Turn-the-Crank Process:

- **1.** write down a table showing desired 0/1 outputs
- 2. construct a Boolean algebra expression
 - term for each 1 in the column
 - sum (or) them to get all 1s
- 3. simplify the expression using equivalences
- 4. translate Boolean algebra to a circuit

(Since it's turn-the-crank, software can do this for you.)

A + B S (C_{OUT}) 0 + 0 = 0 (with $C_{OUT} = 0$) 0 + 1 = 1 (with $C_{OUT} = 0$) 1 + 0 = 1 (with $C_{OUT} = 0$) 1 + 1 = 0 (with $C_{OUT} = 1$)

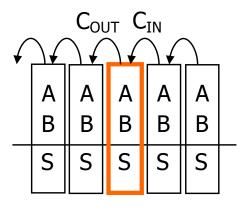
Α	$0 + 0 = 0$ (with $C_{OUT} = 0$)
<u>+ B</u>	$0 + 1 = 1$ (with $C_{OUT} = 0$)
S	$1 + 0 = 1$ (with $C_{OUT} = 0$)
(C _{OUT})	$1 + 1 = 0$ (with $C_{OUT} = 1$)

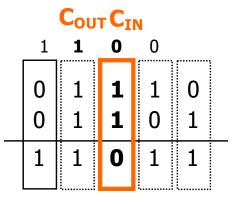
Idea: To chain these together, let's add a carry-in

Α	$0 + 0 = 0$ (with $C_{OUT} = 0$)
<u>+ B</u>	$0 + 1 = 1$ (with $C_{OUT} = 0$)
S	$1 + 0 = 1$ (with $C_{OUT} = 0$)
(C _{OUT})	$1 + 1 = 0$ (with $C_{OUT} = 1$)

Idea: These are chained together, with a carry-in

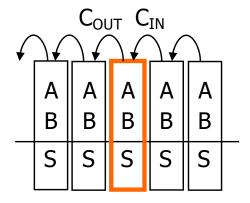
 (C_{IN}) A + B S (C_{OUT})



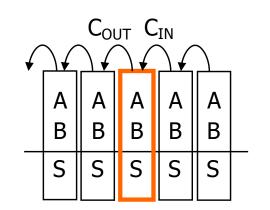


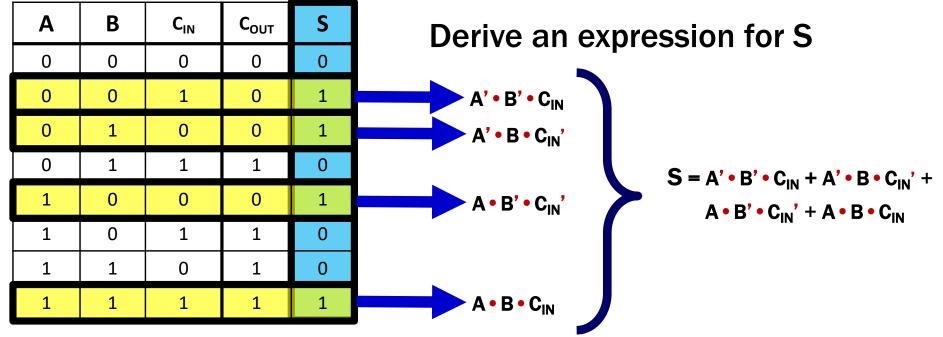
- Inputs: A, B, Carry-in
- **Outputs:** Sum, Carry-out

Α	В	C _{IN}	C _{OUT}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

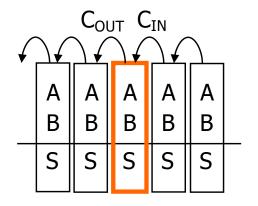


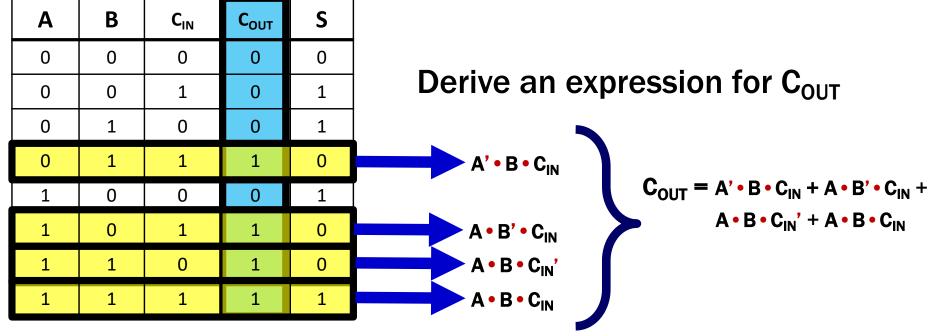
- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out





- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

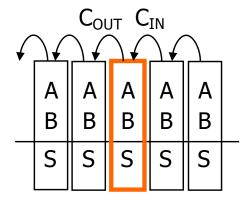




$$S = A' \bullet B' \bullet C_{IN} + A' \bullet B \bullet C_{IN}' + A \bullet B' \bullet C_{IN}' + A \bullet B \bullet C_{IN}$$

• Inputs: A, B, Carry-in

Outputs: Sum, Carry-out •

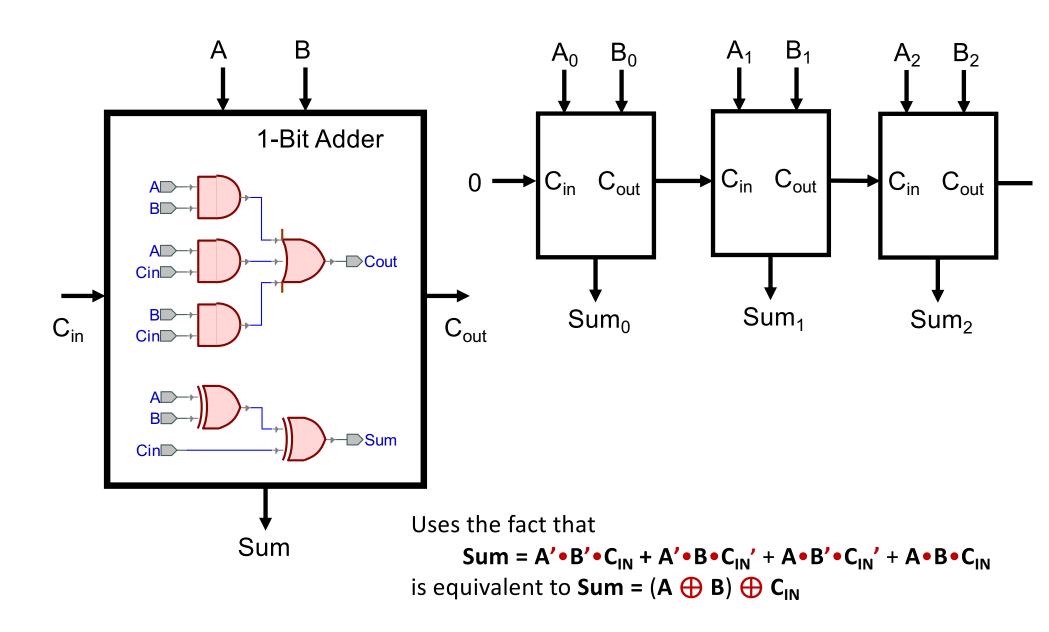


Α	В	C _{IN}	C _{OUT}	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	$S = A' \bullet B' \bullet C_{IN} + A' \bullet B \bullet C_{IN}' + A \bullet B' \bullet C_{IN}' + A \bullet B \bullet C_{IN}$
0	1	1	1	0	
1	0	0	0	1	$\mathbf{C}_{OUT} = \mathbf{A}' \bullet \mathbf{B} \bullet \mathbf{C}_{IN} + \mathbf{A} \bullet \mathbf{B}' \bullet \mathbf{C}_{IN} + \mathbf{A} \bullet \mathbf{B} \bullet \mathbf{C}_{IN}' + \mathbf{A} \bullet \mathbf{B} \bullet \mathbf{C}_{IN}$
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

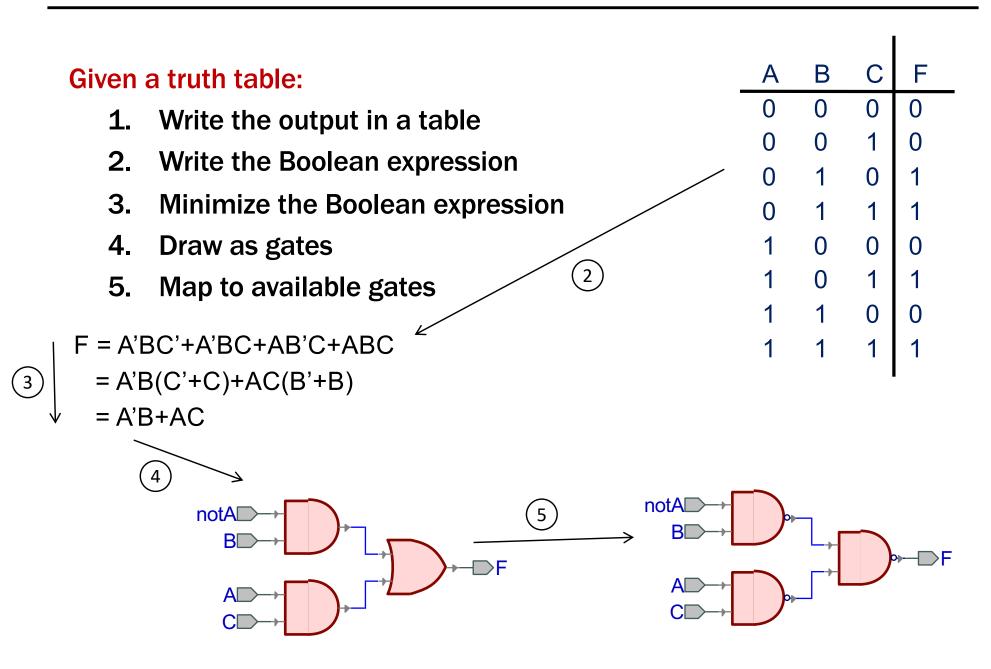
Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions – e.g., full adder's carry-out function

A 2-bit Ripple-Carry Adder



Mapping Truth Tables to Logic Gates

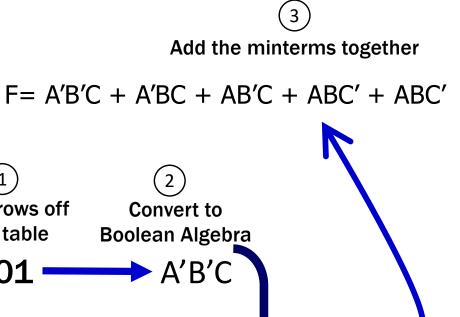


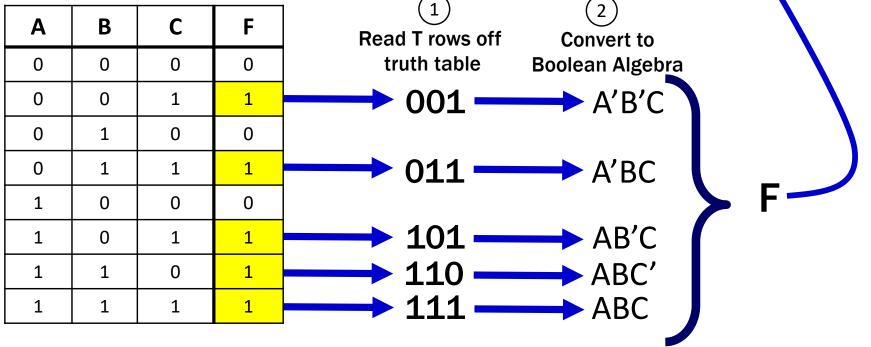
Truth table is the unique signature of a 0/1 function

- The same truth table can have many gate realizations
 - We've seen this already
 - Depends on how good we are at Boolean simplification
- Canonical forms
 - Standard forms for a Boolean expression
 - We all come up with the same expression

Sum-of-Products Canonical Form

- AKA Disjunctive Normal Form (DNF)
- AKA Minterm Expansion





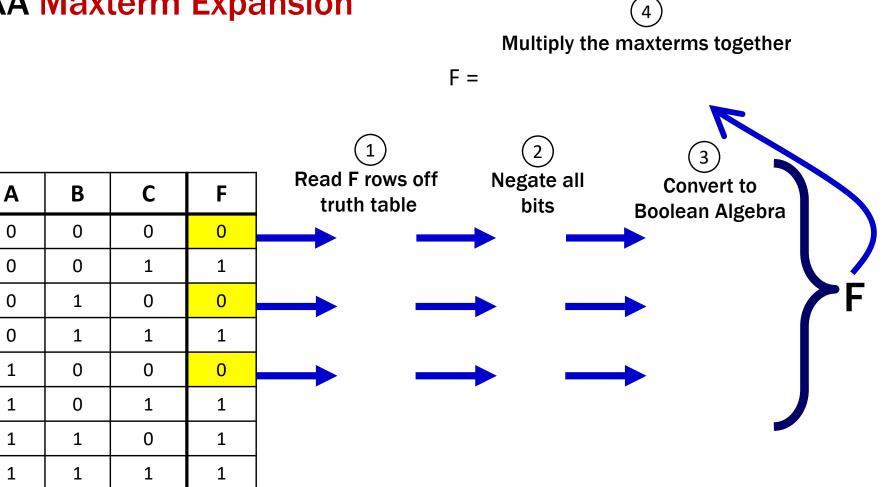
Product term (or minterm)

- ANDed product of literals input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

А	В	С	minterms	
0	0	0	A'B'C'	F in canonical form:
0	0	1	A'B'C	F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC
0	1	0	A'BC'	
0	1	1	A'BC	canonical form \neq minimal form
1	0	0	AB'C'	F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'
1	0	1	AB'C	= (A'B' + A'B + AB' + AB)C + ABC'
1	1	0	ABC'	= ((A' + A)(B' + B))C + ABC'
1	1	1	ABC	= C + ABC'
				= ABC' + C
				= AB + C

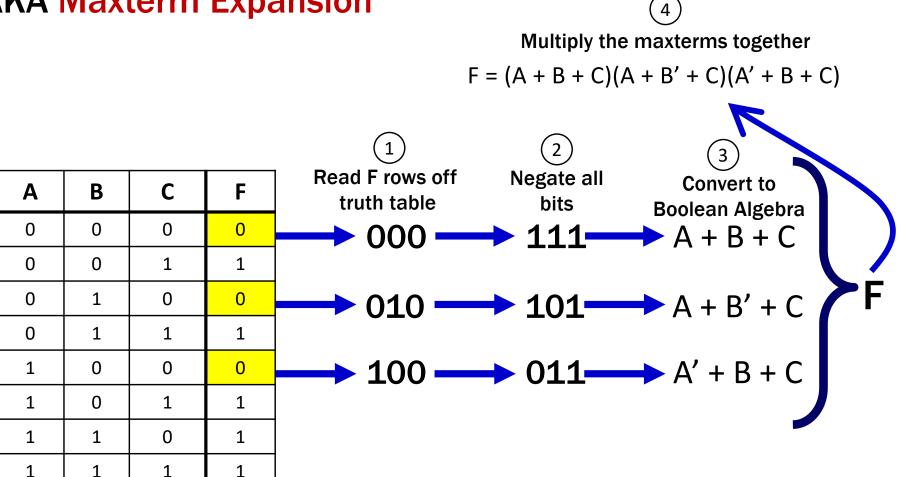
Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion



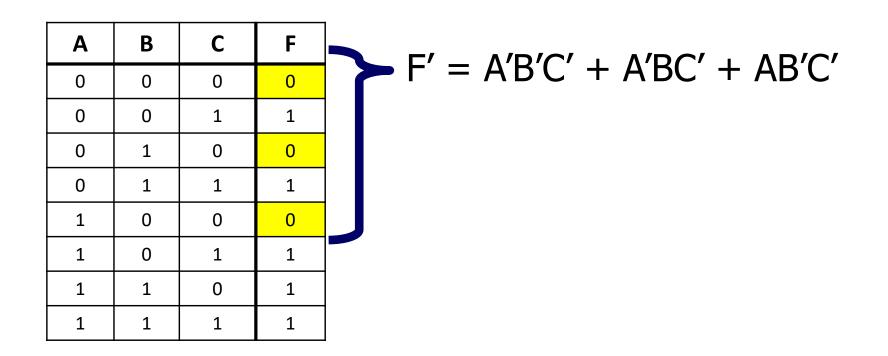
Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion



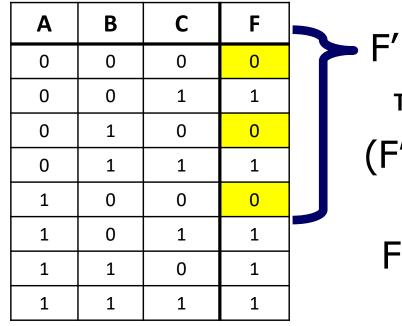
Useful Facts:

- We know (F')' = F
- We know how to get a **minterm** expansion for F'



Useful Facts:

- We know (F')' = F
- We know how to get a minterm expansion for F'



$$F' = A'B'C' + A'BC' + AB'C'$$

Taking the complement of both sides...

$$(\mathsf{F}')' = (\mathsf{A}'\mathsf{B}'\mathsf{C}' + \mathsf{A}'\mathsf{B}\mathsf{C}' + \mathsf{A}\mathsf{B}'\mathsf{C}')'$$

And using DeMorgan/Comp....

$$F = (A'B'C')' (A'BC')' (AB'C')'$$

F = (A + B + C)(A + B' + C)(A' + B + C)

Sum term (or maxterm)

- ORed sum of literals input combination for which output is false
- each variable appears exactly once, true or inverted (but not both)

Α	В	С	maxterms	F in canonical form:
0	0	0	A+B+C	F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)
0	0	1	A+B+C'	
0	1	0	A+B'+C	canonical form \neq minimal form
0	1	1	A+B'+C'	F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)
1	0	0	A'+B+C	= (A + B + C) (A + B' + C)
1	0	1	A'+B+C'	(A + B + C) (A' + B + C)
1	1	0	A'+B'+C	= (A + C) (B + C)
1	1	1	A'+B'+C'	

Predicate Logic

Propositional Logic

"If you take the high road and I take the low road then I'll arrive in Scotland before you."

Predicate Logic

"All positive integers x, y, and z satisfy $x^3 + y^3 \neq z^3$."

Propositional Logic

 Allows us to analyze complex propositions in terms of their simpler constituent parts (a.k.a. atomic propositions) joined by connectives

Predicate Logic

 Lets us analyze them at a deeper level by expressing how those propositions depend on the objects they are talking about

Adds two key notions to propositional logic

- Predicates
- Quantifiers

Predicate

- A function that returns a truth value, e.g.,

Cat(x) ::= "x is a cat" Prime(x) ::= "x is prime" HasTaken(x, y) ::= "student x has taken course y" LessThan(x, y) ::= "x < y" Sum(x, y, z) ::= "x + y = z" GreaterThan5(x) ::= "x > 5" HasNChars(s, n) ::= "string s has length n"

Predicates can have varying numbers of arguments and input types.

For ease of use, we define one "type"/"domain" that we work over. This non-empty set of objects is called the "domain of discourse".

For each of the following, what might the domain be? (1) "x is a cat", "x barks", "x ruined my couch"

"mammals" or "sentient beings" or "cats and dogs" or ...

(2) "x is prime", "x = 0", "x < 0", "x is a power of two"

"numbers" or "integers" or "integers greater than 5" or ...

(3) "student x has taken course y" "x is a pre-req for z"

"students and courses" or "university entities" or ...

We use quantifiers to talk about collections of objects.

∀x P(x)
P(x) is true for every x in the domain
read as "for all x, P of x"

 $\exists x P(x)$

There is an x in the domain for which P(x) is true read as "there exists x, P of x" We use quantifiers to talk about collections of objects.
Universal Quantifier ("for all"): ∀x P(x)
P(x) is true for every x in the domain
read as "for all x, P of x"

Examples: Are these true?

• $\forall x \text{ Odd}(x)$

• $\forall x \text{ LessThan4}(x)$

We use quantifiers to talk about collections of objects.
Universal Quantifier ("for all"): ∀x P(x)
P(x) is true for every x in the domain
read as "for all x, P of x"

Examples: Are these true? It depends on the domain. For example:

• $\forall x \text{ Odd}(x)$

 ${}^{\bullet}$

∀x LessThan4(x)

{1, 3, -1, -27}	Integers	Odd Integers
True	False	True
True	False	False

We use *quantifiers* to talk about collections of objects. Existential Quantifier ("exists"): $\exists x P(x)$ There is an x in the domain for which P(x) is true read as "there exists x, P of x"

Examples: Are these true?

- $\exists x \operatorname{Odd}(x)$
- $\exists x \text{ LessThan4}(x)$

We use *quantifiers* to talk about collections of objects. Existential Quantifier ("exists"): $\exists x P(x)$ There is an x in the domain for which P(x) is true read as "there exists x, P of x"

Examples: Are these true? It depends on the domain. For example:

• $\exists x \text{ Odd}(x)$

• $\exists x \text{ LessThan4}(x)$

{1, 3, -1, -27}	Integers	Positive Multiples of 5
True	True	True
True	True	False