CSE 311: Foundations of Computing

Lecture 5: DNF, CNF and Predicate Logic

Administrivia

HW1 due tonight

HW2 posted tomorrow

 some tools available for testing equivalence chains
— http://homes.cs.washington.edu/~kevinz/equiv-test/
— another mentioned in the HW, preloaded with HW1 problems

* both are optional
— also “beta” software

http://homes.cs.washington.edu/~kevinz/equiv-test/

Last Time: Building Circuits

Turn-the-Crank Process:

1. write down a table showing desired O/1 outputs

2. construct a Boolean algebra expression
— term for each 1 in the column

— sum (or) them to get all 1s
3. simplify the expression using equivalences
4. translate Boolean algebra to a circuit

(Since it’s turn-the-crank, software can do this for you.)

1-bit Binary Adder

A

+B

S
(Cour)

0 + 0 = 0 (with Coyr = 0)
0+ 1 = 1 (with Coyr = 0)
1 + 0 = 1 (with Cyyr = O)
1+ 1 = 0 (with Cyyr = 1)

1-bit Binary Adder

A 0 + 0 = 0 (with Cyyr = 0)
+B 0+ 1 =1 (with Cyyr = 0)
S 1 + 0 = 1 (with Coyr = O)
(Cour) 1+1=0(withCyyr=1)

Idea: To chain these together, let's add a carry-in

1-bit Binary Adder

O+ 0 =0 (with Cy;r =0)
O+ 1=1(withCqyy; =0)
1+ 0=1(with Cyy; =0)
(Cour) 1+1=0(withCyyr=1)

W >

o

Idea: These are chained together, with a carry-in

COUT CIN

Cn aYaYavays 3

AlAllAallala 0|
BIB|B|B|B 0|

W >

O| = = 'O

ol

S{S|S|S|S

| = = e
= O = O

(Cour)

1-bit Binary Adder

* |nputs: A, B, Carry-in
* Qutputs: Sum, Carry-out

A B CIN COUT S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

COUT CIN
ATATATAYA
AlAlA]A]lA
BlB||B|lB|B
s(slis|s]s

COUT

1-bit Binary Adder

* |nputs: A, B, Carry-in
* Qutputs: Sum, Carry-out

ATATAVAYA

@™ >

™ >

o >

o >

Derive an expression for S

A’°B’°C|N
A"B'Cm’
S=A"*B*Cp+A *B*Cy +

A'B"cm’ A'B"C|N’+A'B.CIN

Al B | cn | Coum ﬂ
0 0 0 0

I S N N
1 0 1 1
1 1 0 1 H

A*B°*Cp

1-bit Binary Adder

° . _1 Coutr Cin
Inputs: A, B, Carry-in AN
* Qutputs: Sum, Carry-out AllAallallalla
B|B|/B|B|B
sfslslls|s

Derive an expression for Cqyt

A’.B°C|N

Cour=A"*B*Cn+A*B *Cy+
A*B’*Cp A*B*C\ +A°B°Cy
A'B'Cm’
A'B’Cm

S=A’°B’°C|N+A’.B.C|N’ +A'B"C|N’ +A'B°C|N

1-bit Binary Adder

 Inputs: A, B, Carry-in Coyr Cmn
P /By LAty AYAVAYAYA
* Qutputs: Sum, Carry-out AllAallallalla
BIB|IB!|B| B
siisiislls|s
A B CIN COUT S
0 0 0 0 0
0 0 1 0 1
o | 1 0 O | ! | S=A+B*Cy+A*BeCy +A*B*Cy +A*B+Cp
0 1 1 1 0
1 5 0 0 1 COUT=A’.B.CIN+A.B’.CIN+A.B.CIN’+A.B.CIN
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

— e.g., full adder’s carry-out function

Cout

A'B Cin + AB'Cin + ABCin"+ AB Cin

A'BCin + AB'Cin + ABCin” +|ABCin + ABCin

A'BCin + ABCin + AB'Cin + ABCin” + ABCin
(A+A)BCin + AB'Cin + ABCin” + ABCin
(1)BCin + AB'Cin + ABCin” + ABCin

B Cin
B Cin
B Cin
B Cin
B Cin
B Cin
B Cin

+

+ + + + + +

AB' Cin + ABCin” + | ABCin + ABCin
AB' Cin + ABCin + ABCin” + ABCin
A(B"+ B)Cin + ABCin” + ABCin
A(1)Cin + ABCin” + ABCin

A Cin + AB (Cin"+ Cin)

ACn + AB(1) _
ACin + AB adding extra terms

creates new factoring
opportunities

A 2-bit Ripple-Carry Adder

A, B, A, B,

Cin Cout —> Cin Cout o

! !

Sum1 Sum2

Uses the fact that
Sum Sum = A’eB’eCy + A’eBeC, + AeB’¢Cy’ + A*BeCyy
is equivalent to Sum = (A &@ B) © C,y

Mapping Truth Tables to Logic Gates

Given a truth table:

1. Write the output in a table

Write the Boolean expression
Minimize the Boolean expression

2
3
4. Draw as gates
5. Map to available gates

F = ABC’'+A'BC+AB’C+ABC
@l = AB(C’+C)+AC(B’+B)
= AB+AC

o

NotALD—

B|:>—+—_>_k i

Al D—r
Co—

—OF

notALD—
B >—

.~ a2 00 ool
A2 00 2 a0 olw
~ 0 -~0 =0 = o|lo
. O =0 =2 2 0O Ol

Al D—+

T

oy

Co—r

Canonical Forms

* Truth table is the unique signature of a O/1 function

* The same truth table can have many gate realizations
— We've seen this already
— Depends on how good we are at Boolean simplification

e Canonical forms
— Standard forms for a Boolean expression
— We all come up with the same expression

Sum-of-Products Canonical Form

 AKA Disjunctive Normal Form (DNF)
* AKA Minterm Expansion ©

Add the minterms together

F= AB'C + ABC + AB'C + ABC" + ABC’

Read T rows off Convert to
truth table Boolean Algebra

= 001 == A'B’C

= 011 = A'BC

e 1 0] =——p AB’C

e 110 = ABC’

R, |lRr|r|lOo|lo|lo|o]| P

R |l—Rr|lO|lO|lrR|R,R|O|lOI A

R |lO|lRr|O|lRLR]J]O|lRL|O]1 O

RlRr|lRr|lO|lR|O|Rr|[O] =M

p—]]] — ABC

Sum-of-Products Canonical Form

Product term (or minterm)
— ANDed product of literals - input combination for which output is true
— each variable appears exactly once, true or inverted (but not both)

A B C | minterms _ _
0 0 o0 |ABC F in canonical form:
0 0 1 |ABC F(A, B,C) = AB'C + ABC + AB'C + ABC’ + ABC
0 1 0 |ABC _ .
0 1 1 | ABC canonical form = minimal form
1 0 0 |ABC F(A, B,C) = AB'C + ABC + AB'C + ABC + ABC’
1 0 1 |ABC = (AB' + AB + AB’ + AB)C + ABC'
1 1 0 | ABC = (A" + A)(B’ + B))C + ABC’
= C + ABC’
1 1 1 | ABC
= ABC' + C

=AB + C

Product-of-Sums Canonical Form

 AKA Conjunctive Normal Form (CNF)
* AKA Maxterm Expansion @

Multiply the maxterms together

F=

A B c F Read F@ws off Neg,a}@?e all Concjzrt to
truth table bits Boolean Algebra

0 0 0 0 SN —

0 0 1 1

0 1 0 V| SN SRS —

0 1 1 1

1 0 0 V) — —

1 0 1 1

1 1 0 1

1 1 1 1

Product-of-Sums Canonical Form

 AKA Conjunctive Normal Form (CNF)
* AKA Maxterm Expansion @

Multiply the maxterms together
F=(A+B+C)(A+B +C)(A”+B+C)

® @ ®

Read F rows off Negate all Convert to
truth table bits Boolean Algebra

ey) =P]] | A + B + C

—p 010 ==p 101=—=>A+B' +C £ F

prep 1 00 w01] A’ + B + C

R, |lRr|r|lOo|lo|lo|o]| P

R |lO|lRr|O|lRLR]J]O|lRL|O]1 O

R |l—Rr|lO|lO|lrR|R,R|O|lOI A
Rr|lRr|R|O|lR|]|O|RR|O] =M

Product-of-Sums: Why does this procedure work?

Useful Facts:
 We know (F')=F
 We know how to get a minterm expansion for F’

F'= AB'C' + ABC' + AB'CC

R, |lRr|r|lOo|lo|lo|o]| P

R |lO|lRr|O|lRLR]J]O|lRL|O]1 O

R |l—Rr|lO|lO|lrR|R,R|O|lOI A
Rr|lRr|R|O|lR|]|O|RR|O] =M

Product-of-Sums: Why does this procedure work?

Useful Facts:
 We know (F')=F
 We know how to get a minterm expansion for F’

F'= AB'C' + ABC' + AB'C’
Taking the complement of both sides...
(F) = (AB'C" + ABC" + AB'C’)’
And using DeMorgan/Comp....

F — (AIBICI)I (AIBCI)I (ABICI)I

R, |lRr|r|lOo|lo|lo|o]| P

R |lO|lRr|O|lRLR]J]O|lRL|O]1 O

R |l—Rr|lO|lO|lrR|R,R|O|lOI A
Rr|lRr|R|O|lR|]|O|RR|O] =M

F=(A+B+C)(A+B +C)A +B+ ()

Product-of-Sums Canonical Form

Sum term (or maxterm)
— ORed sum of literals - input combination for which output is false
— each variable appears exactly once, true or inverted (but not both)

A B C | maxterms F in canonical form:

O O O |A+B+C F(A,B,C) =(A+B+CO A+B +C)A+B+0
O 0 1 |A+B+C

0 1 0 |A+B+C canonical form = minimal form

0 1 1 |A+B'+C F(A,B,C) =(A+B+C)(A+B'+C)(A+B+C)
10 0 |A+B+C =(A+B+C)(A+B +C)

10 1 | A+B+C (A+B+C)(A+B+C)

1 1 0 [A+B+C =(A+C)(B+0)

1 1 1 | A+B+C

Predicate Logic

Predicate Logic

* Propositional Logic

“If you take the high road and | take the low road then I'll
arrive in Scotland before you.”

* Predicate Logic
“All positive integers x, y, and z satisfy x3 + y3 # z5,

Predicate Logic

* Propositional Logic

— Allows us to analyze complex propositions in
terms of their simpler constituent parts (a.k.a.
atomic propositions) joined by connectives

* Predicate Logic

— Lets us analyze them at a deeper level by
expressing how those propositions depend on
the objects they are talking about

Predicate Logic

Adds two key notions to propositional logic
— Predicates

— Quantifiers

Predicates

Predicate
— A function that returns a truth value, e.g.,

Cat(x) ::= “x is a cat”

Prime(x) ::= “x is prime”

HasTaken(x, y) ::= “student x has taken course y”
LessThan(x, y) ::= “x<y”

Sum(x, vy, z) = “x+y=2"

GreaterThan5(x) ::= “x > 5"

HasNChars(s, n) ::= “string s has length n”

Predicates can have varying numbers of arguments
and input types.

Domain of Discourse

For ease of use, we define one “type”/“domain” that we
work over. This non-empty set of objects is called the
“domain of discourse”.

For each of the following, what might the domain be?

(1) “x is a cat”, “x barks”, “x ruined my couch”
“mammals” or “sentient beings” or “cats and dogs” or ...

(2) “x is prime”, “x =07, “x < 07, “x is a power of two”
“numbers” or “integers” or “integers greater than 5” or ...

(3) “student x has taken course y” “x is a pre-req for z”

“students and courses” or “university entities” or ...

Quantifiers

We use quantifiers to talk about collections of objects.

Vx P(x) I @)

P(x) is true for every x in the domain QUANTIFIEN
read as “for all x, P of x”

3x P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”): Vx P(x)

P(x) is true for every x in the domain
read as “for all x, P of x”

Examples: Arethese true?

¢ Vx 0dd(x)

VX LessThan4(x)

Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”): Vx P(x)

P(x) is true for every x in the domain
read as “for all x, P of x”

Exam ples: Are these true? It depends on the domain. For example:

{1, 3, -1, -27} Integers Odd Integers

* Vx 0dd(x) True False True

True False False

VX LessThan4(x)

Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”): dx P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Examples: Arethesetrue?

. JIx 0dd(x)

* dx LessThan4(x)

Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”): dx P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Exam ples: Are these true? It depends on the domain. For example:

Positive
{1,3,-1,-27} Integers Multiples of 5
e dx Odd(x)
True True True

 Jx LessThan4(x) True True False

