CSE 311: Foundations of Computing I

Set Definitions

Common Sets

- $\mathbb{N}=\{0,1,2, \ldots\}$ is the set of Natural Numbers.
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is the set of Integers.
- $\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z} \wedge q \neq 0\right\}$ is the set of Rational Numbers.
- \mathbb{R} is the set of Real Numbers.

Containment, Equality, and Subsets

Let A, B be sets. Then:

- $x \in A$ (" x is an element of A ") means that x is an element of A.
- $x \notin A$ (" x is not an element of A ") means that x is not an element of A.
- $A \subseteq B$ (" A is a subset of B ") means that all the elements of A are also in B.
- $A \supseteq B$ (" A is a superset of B ") means that all the elements of B are also in A.
- $(A=B) \equiv(A \subseteq B) \wedge(B \subseteq A) \equiv \forall x(x \in A \leftrightarrow x \in B)$

Set Operations

Let A, B be sets. Then:

- $A \cup B$ is the union of A and $B . A \cup B=\{x: x \in A \vee x \in B\}$.
- $A \cap B$ is the intersection of A and $B . A \cap B=\{x: x \in A \wedge x \in B\}$.
- $A \backslash B$ is the difference of A and B. $A \backslash B=\{x: x \in A \wedge x \notin B\}$.
- $A \oplus B$ is the symmetric difference of A and B. $A \oplus B=\{x: x \in A \oplus x \in B\}$.
- \bar{A} is the complement of A. If we restrict ourselves to a "universal set", \mathcal{U}, (a set of all possible things we're discussing), then $\bar{A}=\{x \in \mathcal{U}: x \notin A\}=\{x \in \mathcal{U}: \neg(x \in A)\}$.

Set Constructions

Let A, B, C, D be sets and P be a predicate. Then:

- $S=\{x: \mathrm{P}(x)\}$ is notation which means that S is a set that contains all objects x (in the domain of P) with property P.
- $A \times B$ is the cartesian product of A and $B . A \times B=\{(a, b): a \in A, b \in B\}$.
- $[n]$ ("brackets n ") is the set of natural numbers from 1 to n. $[n]=\{x \in \mathbb{N}: 1 \leq x \leq n\}$.
- $\mathcal{P}(A)$ is the power set of A. $\mathcal{P}(A)=\{S: S \subseteq A\}$.

