CSE 311: Foundations of Computing

Lecture 28: Undecidability, Reductions, and Turing Machines

HW7 Solutions handed out in section yesterday
HW8 Solutions handed out today
Don’t leave without them.
Final exam

- **Monday** at either **2:30-4:20 p.m.** or **4:30-6:20 p.m.**
 - Sieg Hall 134
 - You need to fill out **Catalyst Survey** to say which you are taking by **midnight Sunday** night.
 - Bring your **UW ID** and have it out and ready during the exam

- **Comprehensive** coverage. If you had a homework question on it, it is fair game. See link on webpage.
 - Includes pre-midterm topics, e.g. formal proofs. Will contain the same sheets at end.

- **Review session:** **Sunday 3:30-5:00 p.m.** EEB 105
 - Bring your questions !!
Review: Countability vs Uncountability

• To prove a set \(A \) countable you must show
 – There exists a listing \(x_1, x_2, x_3, \ldots \) such that every element of \(A \) is in the list.

• To prove a set \(B \) uncountable you must show
 – For every listing \(x_1, x_2, x_3, \ldots \) there exists some element in \(B \) that is not in the list.

 – The diagonalization proof shows how to describe a missing element \(d \) in \(B \) based on the listing \(x_1, x_2, x_3, \ldots \).

Important: the proof produces a \(d \) no matter what the listing is.
The Halting Problem

Given:
- CODE(P) for any program P
- input x

Output:
- true if P halts on input x
- false if P does not halt on input x

Theorem [Turing]: There is no program that solves the Halting Problem

Proof: By contradiction.

Assume that a program H solving the Halting program does exist. Then program D must exist
H solves the halting problem implies that
\[H(\text{CODE}(D), x) \] is true iff \(D(x) \) halts, \(H(\text{CODE}(D), x) \) is false iff not \(D(x) \) halts.

Suppose that \(D(\text{CODE}(D)) \) halts.
Then, by definition of \(H \) it must be that
\[H(\text{CODE}(D), \text{CODE}(D)) \] is true.
Which by the definition of \(D \) means that \(D(\text{CODE}(D)) \) doesn’t halt.

Suppose that \(D(\text{CODE}(D)) \) doesn’t halt.
Then, by definition of \(H \) it must be that
\[H(\text{CODE}(D), \text{CODE}(D)) \] is false.
Which by the definition of \(D \) means \(D(\text{CODE}(D)) \) halts.

The ONLY assumption was the program \(H \) exists
so that assumption must have been false.

Contradiction!

Does \(D(\text{CODE}(D)) \) halt?
No general procedure for bug checks succeeds.
Now, I won’t just assert that, I’ll show where it leads:
I will prove that although you might work till you drop,
you cannot tell if computation will stop.

For imagine we have a procedure called P
that for specified input permits you to see
whether specified source code, with all of its faults,
defines a routine that eventually halts.

You feed in your program, with suitable data,
and P gets to work, and a little while later
(in finite compute time) correctly infers
whether infinite looping behavior occurs...
Here’s the trick that I’ll use – and it’s simple to do. I’ll define a procedure, which I will call Q, that will use P’s predictions of halting success to stir up a terrible logical mess.

And this program called Q wouldn’t stay on the shelf; I would ask it to forecast its run on itself. When it reads its own source code, just what will it do? What’s the looping behavior of Q run on Q?

Full poem at:
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
The Halting Problem isn’t the only hard problem

• Can use the fact that the Halting Problem is undecidable to show that other problems are undecidable

General method:

Prove that if there were a program deciding B then there would be a way to build a program deciding the Halting Problem.

“B decidable → Halting Problem decidable”

Contrapositive:

“Halting Problem undecidable → B undecidable”

Therefore B is undecidable
Last time: A CSE 141 assignment

Students should write a Java program that:

- Prints “Hello” to the console
- Eventually exits

Gradelt, Practicelt, etc. need to grade the students.

How do we write that grading program?

WE CAN’T: THIS IS IMPOSSIBLE!
A related undecidable problem

• **HelloWorldTesting Problem:**
 – **Input:** CODE(Q) and x
 – **Output:**
 - True if Q outputs “HELLO WORLD” on input x
 - False if Q does not output “HELLO WORLD” on input x

• **Theorem:** The HelloWorldTesting Problem is undecidable.
• **Proof idea:** Show that if there is a program T to decide HelloWorldTesting then there is a program H to decide the Halting Problem for code(P) and x.
A related undecidable problem

• Suppose there is a program T that solves the HelloWorldTesting problem. Define program H that takes input CODE(P) and x and does the following:
 – Creates CODE(Q) from CODE(P) by
 (1) removing all output statements from CODE(P), and
 (2) adding a System.out.println(“HELLO WORLD”) immediately before any spot where P could halt
 Then runs T on input CODE(Q) and x.

• If P halts on input x then Q prints HELLO WORLD and halts and so H outputs true (because T outputs true on input CODE(Q))
• If P doesn’t halt on input x then Q won’t print anything since we removed any other print statement from CODE(Q) so H outputs false

We know that such an H cannot exist. Therefore T cannot exist.
The HaltsNoInput Problem

- Input: CODE(R) for program R
- Output: True if R halts without reading input
 False otherwise.

Theorem: HaltsNoInput is undecidable

General idea “hard-coding the input”:
- Show how to use CODE(P) and x to build CODE(R) so P halts on input x ⇔ R halts without reading input
The HaltsNoInput Problem

“Hard-coding the input”:

• Show how to use CODE(P) and x to build CODE(R) so P halts on input x ⇔ R halts without reading input

• Replace input statement in CODE(P) that reads input x into variable var, by a hard-coded assignment statement:

 var = x

 to produce CODE(R).

• So if we have a program N to decide HaltsNoInput then we can use it as a subroutine as follows to decide the Halting Problem, which we know is impossible:

 – On input CODE(P) and x, produce CODE(R). Then run N on input CODE(P) and output the answer that N gives.
• The impossibility of writing the CSE 141 grading program follows by combining the ideas from the undecidability of HaltsNoInput and HelloWorld.
More Reductions

- Can use undecidability of these problems to show that other problems are undecidable.

- For instance:
 \[\text{EQUIV}(P, Q) : \begin{align*}
 \text{True} & \text{ if } P(x) \text{ and } Q(x) \text{ have the same behavior for every input } x \\
 \text{False} & \text{ otherwise}
 \end{align*} \]

 \[Q : \text{print "HELLO WORLD"} \]
Rice’s theorem

Not every problem on programs is undecidable!

Which of these is decidable?

- Input CODE(P) and x
 Output: true if P prints “ERROR” on input x after less than 100 steps
 false otherwise

- Input CODE(P) and x
 Output: true if P prints “ERROR” on input x after more than 100 steps
 false otherwise

Rice’s Theorem (a.k.a. Compilers Suck Theorem - informal):
Any “non-trivial” property of the input-output behavior of Java programs is undecidable.
Computers and algorithms

• Does Java (or any programming language) cover all possible computation? Every possible algorithm?

• There was a time when computers were people who did calculations on sheets paper to solve computational problems

• Computers as we known them arose from trying to understand everything these people could do.
Before Java

1930’s:

How can we formalize what algorithms are possible?

- **Turing machines** (Turing, Post)
 - basis of modern computers
- **Lambda Calculus** (Church)
 - basis for functional programming, LISP
- **μ-recursive functions** (Kleene)
 - alternative functional programming basis
Turing machines

Church-Turing Thesis:
Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

Evidence
- Intuitive justification
- Huge numbers of models based on radically different ideas turned out to be equivalent to TMs
Turing machines

- **Finite Control**
 - Brain/CPU that has only a finite number of possible “states of mind”

- **Recording medium**
 - An unlimited supply of blank “scratch paper” on which to write & read symbols, each chosen from a finite set of possibilities
 - Input also supplied on the scratch paper

- **Focus of attention**
 - Finite control can only focus on a small portion of the recording medium at once
 - Focus of attention can only shift a small amount at a time
Turing machines

• **Recording medium**
 – An *infinite* read/write “tape” marked off into *cells*
 – Each *cell* can store one *symbol* or be “*blank*”
 – Tape is initially all *blank* except a few *cells* of the tape containing the input string
 – Read/write head can scan one cell of the tape - starts on input

• **In each step**, a Turing machine
 1. Reads the currently scanned cell
 2. Based on current state and scanned symbol
 i. Overwrites symbol in scanned cell
 ii. Moves read/write head left or right one cell
 iii. Changes to a new state

• Each Turing Machine is specified by its *finite set of rules*
Turing machines

<table>
<thead>
<tr>
<th></th>
<th>_</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>(1, L, s_3)</td>
<td>(1, L, s_4)</td>
<td>(0, R, s_2)</td>
</tr>
<tr>
<td>s_2</td>
<td>(0, R, s_1)</td>
<td>(1, R, s_1)</td>
<td>(0, R, s_1)</td>
</tr>
<tr>
<td>s_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UW CSE’s Steam-Powered Turing Machine

Original in Sieg Hall stairwell
Turing machines

Ideal Java/C programs:

– Just like the Java/C you’re used to programming with, except you never run out of memory
 • Constructor methods always succeed
 • malloc in C never fails

Equivalent to Turing machines except a lot easier to program:

– Turing machine definition is useful for breaking computation down into simplest steps
– We only care about high level so we use programs
Turing’s big idea part 1: Machines as data

Original Turing machine definition:
- A different “machine” M for each task
- Each machine M is defined by a finite set of possible operations on finite set of symbols
- So... M has a finite description as a sequence of symbols, its “code”, which we denote $<M>$

You already are used to this idea with the notion of the program code or text but this was a new idea in Turing’s time.
Turing’s big idea part 2: A Universal TM

• A Turing machine interpreter U
 – On input $<M>$ and its input x,
 U outputs the same thing as M does on input x
 – At each step it decodes which operation M would have performed and simulates it.

• One Turing machine is enough
 – Basis for modern stored-program computer
 Von Neumann studied Turing’s UTM design
Takeaway from undecidability

• You can’t rely on the idea of improved compilers and programming languages to eliminate major programming errors
 – truly safe languages can’t possibly do general computation

• **Document your code**
 – there is no way you can expect someone else to figure out what your program does with just your code; since in general it is provably impossible to do this!
We’ve come a long way!

• Propositional Logic.
• Boolean logic and circuits.
• Boolean algebra.
• Predicates, quantifiers and predicate logic.
• Inference rules and formal proofs for propositional and predicate logic.
• English proofs.
• Set theory.
• Modular arithmetic.
• Prime numbers.
• GCD, Euclid's algorithm, modular inverse, and exponentiation.
We’ve come a long way!

- Induction and Strong Induction.
- Recursively defined functions and sets.
- Structural induction.
- Regular expressions.
- Context-free grammars and languages.
- Relations and composition.
- Transitive-reflexive closure.
- Graph representation of relations and their closures.
We’ve come a long way!

- DFAs, NFAs and language recognition.
- Product construction for DFAs.
- Finite state machines with outputs at states.
- Minimization algorithm for finite state machines.
- Conversion of regular expressions to NFAs.
- Subset construction to convert NFAs to DFAs.
- Equivalence of DFAs, NFAs, Regular Expressions.
- Finite automata for pattern matching.
- Method to prove languages not accepted by DFAs.
- Cardinality, countability and diagonalization.
- Undecidability: Halting problem and evaluating properties of programs.
What’s next? …after the final exam...

• **Foundations II (312)**
 – Fundamentals of counting, discrete probability, applications of randomness to computing, statistical algorithms and analysis
 – Ideas critical for machine learning, algorithms

• **Data Abstractions (332)**
 – Data structures, a few key algorithms, parallelism
 – Brings programming and theory together
 – Makes heavy use of induction and recursive defns
Course Evaluation Online

• Fill this out by Sunday night!
 – Your ability to fill it out will disappear at 11:59 p.m. on Sunday.
 – It will be worth your while to fill it out!
Final exam

• **Monday** at either 2:30-4:20 p.m. or 4:30-6:20 p.m.
 - Sieg Hall 134
 - You need to fill out **Catalyst Survey** to say which you are taking by **midnight Sunday** night.
 - Bring your **UW ID** and have it out and ready during the exam

• **Comprehensive** coverage. If you had a homework question on it, it is fair game. See link on webpage.
 - Includes pre-midterm topics, e.g. formal proofs. Will contain the same sheets at end.

• **Review session:** Sunday 3:30-5:00 p.m. EEB 105
 - Bring your questions !!