CSE 311: Foundations of Computing

Lecture 28: Undecidability, Reductions, and Turing Machines
Final exam

• **Monday** at either 2:30-4:20 p.m. or 4:30-6:20 p.m.
 – Sieg Hall 134
 – You need to fill out **Catalyst Survey** to say which you are taking by **midnight Sunday** night.
 – Bring your **UW ID** and have it out and ready during the exam

• **Comprehensive** coverage. If you had a homework question on it, it is fair game. See link on webpage.
 – Includes pre-midterm topics, e.g. formal proofs. Will contain the same sheets at end.

• **Review session:** Sunday 3:30-5:00 p.m. **EEB 105**
 – Bring your questions !!
Review: Countability vs Uncountability

• To prove a set A countable you must show
 – There exists a listing x_1, x_2, x_3, \ldots such that every element of A is in the list.

• To prove a set B uncountable you must show
 – For every listing x_1, x_2, x_3, \ldots there exists some element in B that is not in the list.

 – The diagonalization proof shows how to describe a missing element d in B based on the listing x_1, x_2, x_3, \ldots.

Important: the proof produces a d no matter what the listing is.
Last time: Undecidability of the Halting Problem

\text{CODE}(P) \text{ means } \text{“the code of the program } P \text{”}

\textbf{The Halting Problem}

\textbf{Given:} - \text{CODE}(P) \text{ for any program } P
 - \text{input } x

\textbf{Output:} true \text{ if } P \text{ halts on input } x
 false \text{ if } P \text{ does not halt on input } x

\textbf{Theorem [Turing]:} There is no program that solves the Halting Problem

\textbf{Proof:} By contradiction.

Assume that a program H solving the Halting program does exist. Then program D must exist
Does $D(CODE(D))$ halt?

H solves the halting problem implies that $H(CODE(D), x)$ is true iff $D(x)$ halts, $H(CODE(D), x)$ is false iff not $D(x)$ halts.

Suppose that $D(CODE(D))$ halts. Then, by definition of H it must be that $H(CODE(D), CODE(D))$ is true. Which by the definition of D means $D(CODE(D))$ doesn't halt.

Suppose that $D(CODE(D))$ doesn't halt. Then, by definition of H it must be that $H(CODE(D), CODE(D))$ is false. Which by the definition of D means $D(CODE(D))$ halts.

The ONLY assumption was the program H exists so that assumption must have been false. Contradiction!
No general procedure for bug checks succeeds. Now, I won’t just assert that, I’ll show where it leads: I will prove that although you might work till you drop, you cannot tell if computation will stop.

For imagine we have a procedure called P that for specified input permits you to see whether specified source code, with all of its faults, defines a routine that eventually halts.

You feed in your program, with suitable data, and P gets to work, and a little while later (in finite compute time) correctly infers whether infinite looping behavior occurs...
Here’s the trick that I’ll use – and it’s simple to do.
I’ll define a procedure, which I will call Q,
that will use P’s predictions of halting success
to stir up a terrible logical mess.

And this program called Q wouldn’t stay on the shelf;
I would ask it to forecast its run on $itself$.
When it reads its own source code, just what will it do?
What’s the looping behavior of Q run on Q?

Full poem at:
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
The Halting Problem isn’t the only hard problem

- Can use the fact that the Halting Problem is undecidable to show that other problems are undecidable

General method:

Prove that if there were a program deciding B then there would be a way to build a program deciding the Halting Problem.

“B decidable \rightarrow Halting Problem decidable”

Contrapositive:

“Halting Problem undecidable \rightarrow B undecidable”

Therefore B is undecidable
Last time: A CSE 141 assignment

Students should write a Java program that:

– Prints “Hello” to the console
– Eventually exits

Gradelt, Practicelt, etc. need to grade the students.

How do we write that grading program?

WE CAN’T: THIS IS IMPOSSIBLE!
A related undecidable problem

• HelloWorldTesting Problem:
 – Input: CODE(Q) and x
 – Output:
 True if Q outputs “HELLO WORLD” on input x
 False if Q does not output “HELLO WORLD” on input x

• Theorem: The HelloWorldTesting Problem is undecidable.

• Proof idea: Show that if there is a program T to decide HelloWorldTesting then there is a program H to decide the Halting Problem for code(P) and x.
A related undecidable problem

• Suppose there is a program T that solves the HelloWorldTesting problem. Define program H that takes input CODE(P) and x and does the following:
 – Creates CODE(Q) from CODE(P) by
 (1) removing all output statements from CODE(P), and
 (2) adding a System.out.println(“HELLO WORLD”) immediately before any spot where P could halt
 Then runs T on input CODE(Q) and x.

• If P halts on input x then Q prints HELLO WORLD and halts and so H outputs true (because T outputs true on input CODE(Q))
• If P doesn’t halt on input x then Q won’t print anything since we removed any other print statement from CODE(Q) so H outputs false

We know that such an H cannot exist. Therefore T cannot exist.
The HaltsNoInput Problem

• Input: CODE(R) for program R
• Output: True if R halts without reading input
 False otherwise.

Theorem: HaltsNoInput is undecidable

General idea “hard-coding the input”:
• Show how to use CODE(P) and x to build CODE(R) so
 P halts on input x ⇔ R halts without reading input
The HaltsNoInput Problem

“Hard-coding the input”:

• Show how to use CODE(\(P\)) and \(x\) to build CODE(\(R\)) so \(P\) halts on input \(x\) \(\iff\) \(R\) halts without reading input

• Replace input statement in CODE(\(P\)) that reads input \(x\) into variable var, by a hard-coded assignment statement:

\[
\text{var} = x
\]

to produce CODE(\(R\)).

• So if we have a program \(N\) to decide HaltsNoInput then we can use it as a subroutine as follows to decide the Halting Problem, which we know is impossible:

– On input CODE(\(P\)) and \(x\), produce CODE(\(R\)). Then run \(N\) on input CODE(\(Q\)) and output the answer that \(N\) gives.
• The impossibility of writing the CSE 141 grading program follows by combining the ideas from the undecidability of HaltsNoInput and HelloWorld.
More Reductions

- Can use undecidability of these problems to show that other problems are undecidable.

- For instance:

 \[\text{EQUIV}(P, Q) : \begin{array}{l}
 \text{True} \quad \text{if } P(x) \text{ and } Q(x) \text{ have the same behavior for every input } x \\
 \text{False} \quad \text{otherwise}
 \end{array} \]

 \[P(x) \text{ is input to Helen's Turing machine.} \]

 \[Q(x) \text{ points to Helen's World.} \]
Rice’s theorem

Not every problem on programs is undecidable!

Which of these is decidable?

- Input CODE(P) and x
 Output: true if P prints “ERROR” on input x after less than 100 steps
 false otherwise

- Input CODE(P) and x
 Output: true if P prints “ERROR” on input x after more than 100 steps
 false otherwise

Rice’s Theorem (a.k.a. Compilers Suck Theorem - informal):
Any “non-trivial” property of the input-output behavior of Java programs is undecidable.
Computers and algorithms

• Does Java (or any programming language) cover all possible computation? Every possible algorithm?

• There was a time when computers were people who did calculations on sheets paper to solve computational problems

• Computers as we known them arose from trying to understand everything these people could do.
Before Java

1930’s:

How can we formalize what algorithms are possible?

• **Turing machines** (Turing, Post)
 – basis of modern computers

• **Lambda Calculus** (Church)
 – basis for functional programming, LISP

• **μ-recursive functions** (Kleene)
 – alternative functional programming basis
Turing machines

Church-Turing Thesis:

Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

Evidence

- Intuitive justification
- Huge numbers of models based on radically different ideas turned out to be equivalent to TMs
Turing machines

- **Finite Control**
 - Brain/CPU that has only a finite # of possible “states of mind”

- **Recording medium**
 - An unlimited supply of blank “scratch paper” on which to write & read symbols, each chosen from a finite set of possibilities
 - Input also supplied on the scratch paper

- **Focus of attention**
 - Finite control can only focus on a small portion of the recording medium at once
 - Focus of attention can only shift a small amount at a time
Turing machines

• **Recording medium**
 - An infinite read/write “tape” marked off into **cells**
 - Each **cell** can store one symbol or be “blank”
 - Tape is initially all blank except a few **cells** of the tape containing the input string
 - Read/write head can scan one cell of the tape - **starts on input**

• **In each step**, a Turing machine
 1. Reads the currently scanned cell
 2. Based on current state and scanned symbol
 i. Overwrites symbol in scanned cell
 ii. Moves read/write head left or right one cell
 iii. Changes to a new state

• Each Turing Machine is specified by its **finite set of rules**
Turing machines

<table>
<thead>
<tr>
<th>State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>(1, L, s_3)</td>
<td>(1, L, s_4)</td>
</tr>
<tr>
<td>s_2</td>
<td>(0, R, s_1)</td>
<td>(1, R, s_1)</td>
</tr>
<tr>
<td>s_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The tape is initialized with a blank symbol _, and the machine starts in state s_1. The transitions are shown in the table. The tape moves right or left as specified by the transition rules, and the machine changes states accordingly. The table shows the states and transitions for the machine.
UW CSE’s Steam-Powered Turing Machine

Original in Sieg Hall stairwell
Turing machines

Ideal Java/C programs:
- Just like the Java/C you’re used to programming with, except you never run out of memory
 - Constructor methods always succeed
 - `malloc` in C never fails

Equivalent to Turing machines except a lot easier to program:
- Turing machine definition is useful for breaking computation down into simplest steps
- We only care about high level so we use programs
Turing’s big idea part 1: Machines as data

Original Turing machine definition:

- A different “machine” \(M \) for each task
- Each machine \(M \) is defined by a finite set of possible operations on finite set of symbols
- So... \(M \) has a finite description as a sequence of symbols, its “code”, which we denote \(<M> \)

You already are used to this idea with the notion of the program code or text but this was a new idea in Turing’s time.
Turing’s big idea part 2: A Universal TM

- **A Turing machine interpreter U**
 - On input $<M>$ and its input x, U outputs the same thing as M does on input x.
 - At each step it decodes which operation M would have performed and simulates it.

- **One Turing machine is enough**
 - Basis for modern stored-program computer
 - Von Neumann studied Turing’s UTM design
Takeaway from undecidability

• You can’t rely on the idea of improved compilers and programming languages to eliminate major programming errors
 – truly safe languages can’t possibly do general computation

• Document your code
 – there is no way you can expect someone else to figure out what your program does with just your code; since in general it is provably impossible to do this!
We’ve come a long way!

- Propositional Logic.
- Boolean logic and circuits.
- Boolean algebra.
- Predicates, quantifiers and predicate logic.
- Inference rules and formal proofs for propositional and predicate logic.
- English proofs.
- Set theory.
- Modular arithmetic.
- Prime numbers.
- GCD, Euclid's algorithm, modular inverse, and exponentiation.
We’ve come a long way!

• Induction and Strong Induction.
• Recursively defined functions and sets.
• Structural induction.
• Regular expressions.
• Context-free grammars and languages.
• Relations and composition.
• Transitive-reflexive closure.
• Graph representation of relations and their closures.
We’ve come a long way!

• DFAs, NFAs and language recognition.
• Product construction for DFAs.
• Finite state machines with outputs at states.
• Minimization algorithm for finite state machines.
• Conversion of regular expressions to NFAs.
• Subset construction to convert NFAs to DFAs.
• Equivalence of DFAs, NFAs, Regular Expressions.
• Finite automata for pattern matching.
• Method to prove languages not accepted by DFAs.
• Cardinality, countability and diagonalization.
• Undecidability: Halting problem and evaluating properties of programs.
What’s next? ...after the final exam...

• **Foundations II (312)**
 – Fundamentals of counting, discrete probability, applications of randomness to computing, statistical algorithms and analysis
 – Ideas critical for machine learning, algorithms

• **Data Abstractions (332)**
 – Data structures, a few key algorithms, parallelism
 – Brings programming and theory together
 – Makes heavy use of induction and recursive defns
Course Evaluation Online

• Fill this out by Sunday night!
 – Your ability to fill it out will disappear at 11:59 p.m. on Sunday.
 – It will be worth your while to fill it out!
Final exam

- **Monday** at either **2:30-4:20 p.m. or 4:30-6:20 p.m.**
 - Sieg Hall 134
 - You need to fill out **Catalyst Survey** to say which you are taking by **midnight Sunday** night.
 - Bring your **UW ID** and have it out and ready during the exam

- **Comprehensive** coverage. If you had a homework question on it, it is fair game. See link on webpage.
 - Includes pre-midterm topics, e.g. formal proofs. Will contain the same sheets at end.

- **Review session:** **Sunday 3:30-5:00 p.m. EEB 105**
 - Bring your questions !!