3

Lecture 27: Undecidability

DEFINE DOES IT HALT (PROGRAM):

RETURN TRUE;

THE BIG PICTURE SOLUTION TO THE HALTING PROBLEM A set **S** is **countable** iff we can order the elements of **S** as $S = \{x_1, x_2, x_3, ...\}$

Countable sets:

- $\mathbb N$ the natural numbers
- $\ensuremath{\mathbb{Z}}$ the integers
- \mathbb{Q} the rationals
- Σ^* the strings over any finite Σ The set of all Java programs

Shownby"dovetailing"

1 2 7 7 5

S=G, Ultz Ultz Ultz U.-vieth each lai is finite

Theorem [Cantor]:

The set of real numbers between 0 and 1 is **not** countable.

Proof using "diagonalization".

Last time: Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

So the list is incomplete, which is a contradiction.

Thus the real numbers between 0 and 1 are not countable: "uncountable"

- The set of rational numbers in [0,1) also have decimal representations like this
 - The only difference is that rational numbers always have repeating decimals in their expansions 0.33333... or .25000000...
- So why wouldn't the same proof show that this set of rational numbers is uncountable?
 - Given any listing (even one that is good like the dovetailing listing) we could create the flipped diagonal number *d* as before
 - However, *d* would not have a repeating decimal expansion and so wouldn't be a rational #

It would not be a "missing" number, so no contradiction.

Last time: The set of all functions $f : \mathbb{N} \rightarrow \{0, ..., 9\}$ is uncountable

Supposed listing of all the functions:

For all n, we have $D(n) \neq f_n(n)$. Therefore $D \neq f_n$ for any n and the list is incomplete! $\Rightarrow \{f \mid f : \mathbb{N} \rightarrow \{0, 1, \dots, 9\}\}$ is **not** countable

Last time: Uncomputable functions

We have seen that:

- The set of all (Java) programs is countable
- The set of all functions $f : \mathbb{N} \to \{0, \dots, 9\}$ is not countable

So: There must be some function $f : \mathbb{N} \to \{0, ..., 9\}$ that is not computable by any program!

Interesting... maybe.

Can we come up with an explicit function that is uncomputable?

A "Simple" Program

<pre>public static void collatz(n) {</pre>	11
if (n == 1) {	34
return 1;	17
}	52
if (n % 2 == 0) {	26
return collatz(n/2)	13
} else {	40
return collatz(3*n + 1)	20
}	10
}	5
	16
What does this program do?	8
on n=11?	4
on n=1000000000000000000001?	2
	1

A "Simple" Program

```
public static void collatz(n) {
   if (n == 1) {
      return 1;
   }
   if (n % 2 == 0) {
      return collatz(n/2)
   }
   else {
      return collatz(3*n + 1)
                            Nobody knows whether or not
   }
                            this program halts on all inputs!
}
                            Trying to solve this has been
What does this program do?
                            called a "mathematical disease".
   ... on n=11?
```

Recall our language picture

We're going to be talking about Java code.

CODE(P) will mean "the code of the program P"

```
So, consider the following function: 
    public String P(String x) {
        return new String(Arrays.sort(x.toCharArray());
     }
```

```
What is P(CODE(P))?
```

"((((())))..;AACPSSaaabceeggghiiiilnnnnnooprrrrrrrrssstttttuuwxxyy{}"

CODE(P) means "the code of the program **P**"

The Halting Problem

Given: - CODE(**P**) for any program **P** - input **x**

Output: true if P halts on input x false if P does not halt on input x

Undecidability of the Halting Problem

CODE(P) means "the code of the program **P**"

The Halting Problem

Given: - CODE(**P**) for any program **P** - input **x**

Output: true if P halts on input x false if P does not halt on input x

Theorem [Turing]: There is no program that solves the Halting Problem

• Suppose that H is a Java program that solves the Halting problem. Then we can write this program:

```
public static void D(x) {
    if (H(x,x) == true) {
        while (true); /* don't halt */
    }
    else {
        return; /* halt */
    }
}
```

• Does D(CODE(D)) halt?

public static void D(x) {
 if (H(x,x) == true) {
 while (true); /* don't halt */
 }
 else {
 return; /* halt */
 }
}

H solves the halting problem implies that H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Note: Even though the program D has a while(true), that doesn't mean that the program D actually goes into an infinite loop on input x, which is what H has to determine

- We proved that there is no computer program that can solve the Halting Problem.
 - There was nothing special about Java*

[Church-Turing thesis]

 This tells us that there is no compiler that can check our programs and guarantee to find any infinite loops they might have.

Where did the idea for creating **D** come from?

```
public static void D(x) {
    if (H(x,x) == true) {
        while (true); /* don't halt */
    }
    else {
        return; /* halt */
    }
}
```

D halts on input code(P) iff H(code(P),code(P)) outputs false iff P doesn't halt on input code(P)

Therefore for any program P, **D** differs from P on input code(P)

	Con	nection to diagonalization								Write < P > for CODE(P)				
-	_	<p<sub>1></p<sub>	<p<sub>1> <p<sub>2> <p<sub>3> <p<sub>4> <p<sub>5> <p<sub>6></p<sub></p<sub></p<sub></p<sub></p<sub></p<sub>							Some possible inputs x				
	P ₁	0	1	1	0	1	1	1	0	0	0	1		
	P_2	1	1	0	1	0	1	1	0	1	1	1		
	P_3	1	0	1	0	0	0	0	0	0	0	1		
All programs P	P_4	0	1	1	0	1	0	1	1	0	1	0		
	P ₅	0	1	1	1	1	1	1	0	0	0	1		
	P_6	1	1	0	0	0	1	1	0	1	1	1		
	P ₇	1	0	1	1	0	0	0	0	0	0	1		
	P_8	0	1	1	1	1	0	1	1	0	1	0		
	P ₉				•		•			•				
	•			• •	•	• •	•			•				
• (P,x) entry is 1 if program P halts on input x											ut x			

and **0** if it runs forever

The Halting Problem isn't the only hard problem

 Can use the fact that the Halting Problem is undecidable to show that other problems are undecidable

General method:

Prove that if there were a program deciding B then there would be a way to build a program deciding the Halting Problem.

"B decidable \rightarrow Halting Problem decidable" $(\rightarrow \bigcirc)$

- Q - -,P

Contrapositive:

"Halting Problem undecidable \rightarrow B undecidable"

Therefore **B** is undecidable

Students should write a Java program that:

- Prints "Hello" to the console
- Eventually exits

Gradelt, Practicelt, etc. need to grade the students.

How do we write that grading program?

WE CAN'T: THIS IS IMPOSSIBLE!

A related undecidable problem

- HelloWorldTesting Problem:
 - Input: CODE(Q) and x
 - Output:

True if Q outputs "HELLO WORLD" on input xFalse if Q does not output "HELLO WORLD" on input x

- **Theorem:** The HelloWorldTesting Problem is undecidable.
- Proof idea: Show that if there is a program T to decide HelloWorldTesting then there is a program H to decide the Halting Problem for code(P) and x.

A related undecidable problem

- Suppose there is a program T that solves the HelloWorldTesting problem. Define program H that takes input CODE(P) and x and does the following:
 - Creates CODE(Q) from CODE(P) and x:
 - 1) Store reference to System.out then <u>redirect</u> to a StringWriter
 - 2) Call P(x) -
 - 3) Print "Hello World"
 - Then runs T on input code(Q)
- If P halts on input x then Q prints HELLO WORLD and halts and so H outputs true (because T outputs true on input CODE(Q))
- If P doesn't halt on input x then Q won't print anything since we removed any other print statement from CODE(Q) so H outputs false

We know that such an H cannot exist. Therefore T cannot exist.