
CSE 311: Foundations of Computing

Lecture 27: Undecidability

Last time: Countable sets

A set is countable iff we can order the elements of as
𝟏 𝟐 𝟑

Countable sets:
- the natural numbers
- the integers
- the rationals
- the strings over any finite

The set of all Java programs

Shown
by
“dovetailing”

Last time: Not every set is countable

Theorem [Cantor]:
The set of real numbers between 0 and 1 is not countable.

Proof using “diagonalization”.

Last time: Proof that is not countable

Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...
r1 0. 5 0 0 0 0 0 0 0

r2 0. 3 3 3 3 3 3 3 3

r3 0. 1 4 2 8 5 7 1 4

r4 0. 1 4 1 5 9 2 6 5

r5 0. 1 2 1 2 2 1 2 2

r6 0. 2 5 0 0 0 0 0 0

r7 0. 7 1 8 2 8 1 8 2

r8 0. 6 1 8 0 3 3 9 4

...

Flipping rule:
If digit is 5, make it 1.
If digit is not 5, make it 5.

1

5

5

5

5

5

1

5

So the list is incomplete, which is a contradiction.
Thus the real numbers between 0 and 1 are not countable: “uncountable”

For every :
𝒏 𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟒𝟒 𝟓𝟓

because the numbers differ on
the -th digit!

A note on this proof

• The set of rational numbers in [0,1) also have
decimal representations like this
– The only difference is that rational numbers always

have repeating decimals in their expansions 0.33333...
or .25000000...

• So why wouldn’t the same proof show that this set
of rational numbers is uncountable?
– Given any listing (even one that is good like the

dovetailing listing) we could create the flipped diagonal
number as before

– However, would not have a repeating decimal
expansion and so wouldn’t be a rational #

It would not be a “missing” number, so no contradiction.

Last time:
The set of all functions is uncountable

1 2 3 4 5 6 7 8 9 ...
f1 0. 5 0 0 0 0 0 0 0

f2 0. 3 3 3 3 3 3 3 3

f3 0. 1 4 2 8 5 7 1 4

f4 0. 1 4 1 5 9 2 6 5

f5 0. 1 2 1 2 2 1 2 2

f6 0. 2 5 0 0 0 0 0 0

f7 0. 7 1 8 2 8 1 8 2

f8 0. 6 1 8 0 3 3 9 4

...

1

5

5

5

5

5

1

5

For all , we have 𝒏 . Therefore 𝒏 for any and the
list is incomplete! is not countable

Supposed listing of all the functions:

Flipping rule:
If 𝒏 , set
If 𝒏 , set

Last time: Uncomputable functions

We have seen that:
– The set of all (Java) programs is countable
– The set of all functions is not countable

So: There must be some function that is not
computable by any program!

Interesting… maybe.
Can we come up with an explicit function that is
uncomputable?

A “Simple” Program

public static void collatz(n) {
if (n == 1) {

return 1;
}
if (n % 2 == 0) {

return collatz(n/2)
}
else {

return collatz(3*n + 1)
}

}

What does this program do?
… on n=11?
… on n=10000000000000000001?

11
34
17
52
26
13
40
20
10
5
16
8
4
2
1

A “Simple” Program

public static void collatz(n) {
if (n == 1) {

return 1;
}
if (n % 2 == 0) {

return collatz(n/2)
}
else {

return collatz(3*n + 1)
}

}

What does this program do?
… on n=11?
… on n=10000000000000000001?

Nobody knows whether or not
this program halts on all inputs!

Trying to solve this has been
called a “mathematical disease”.

Recall our language picture

All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

Binary Palindromes

{001, 10, 12}

Java

Some Notation

We’re going to be talking about Java code.

CODE(P) will mean “the code of the program P”

So, consider the following function:
public String P(String x) {

return new String(Arrays.sort(x.toCharArray());
}

What is P(CODE(P))?

“(((())))..;AACPSSaaabceeggghiiiilnnnnnooprrrrrrrrrrrsssttttttuuwxxyy{}”

Undecidability of The Halting Problem

CODE(P) means “the code of the program P”
The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x

Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

Theorem [Turing]: There is no program that solves
the Halting Problem

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x

Proof by contradiction

• Suppose that H is a Java program that solves the
Halting problem. Then we can write this program:

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */
}

}

• Does D(CODE(D)) halt?

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */

}
}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */

}
}

Does D(CODE(D)) halt?

Note: Even though the program D has a
while(true), that doesn’t mean that the
program D actually goes into an infinite
loop on input x, which is what H has to
determine

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */

}
}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */

}
}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */

}
}

Does D(CODE(D)) halt?

Contradiction!

Done

• We proved that there is no computer
program that can solve the Halting Problem.
– There was nothing special about Java*

[Church-Turing thesis]

• This tells us that there is no compiler that can check our
programs and guarantee to find any infinite loops they
might have.

Where did the idea for creating D come from?

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */

}
}

D halts on input code(P) iff H(code(P),code(P)) outputs false
iff P doesn’t halt on input code(P)

Therefore for any program P, D differs from P on input code(P)

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

Write <P> for CODE(P)

This listing of all programs really does exist
since the set of all Java programs is countable

The goal of this “diagonal” argument is not
to show that the listing is incomplete but
rather to show that a “flipped” diagonal
element is not in the listing

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

0 1 1 0 1 1 1 0 0 0 1 ...
1 1 0 1 0 1 1 0 1 1 1 ...
1 0 1 0 0 0 0 0 0 0 1 ...
0 1 1 0 1 0 1 1 0 1 0 ...
0 1 1 1 1 1 1 0 0 0 1 ...
1 1 0 0 0 1 1 0 1 1 1 ...
1 0 1 1 0 0 0 0 0 0 1 ...
0 1 1 1 1 0 1 1 0 1 0 ...
.
.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

Write <P> for CODE(P)

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

0 1 1 0 1 1 1 0 0 0 1 ...
1 1 0 1 0 1 1 0 1 1 1 ...
1 0 1 0 0 0 0 0 0 0 1 ...
0 1 1 0 1 0 1 1 0 1 0 ...
0 1 1 1 1 1 1 0 0 0 1 ...
1 1 0 0 0 1 1 0 1 1 1 ...
1 0 1 1 0 0 0 0 0 0 1 ...
0 1 1 1 1 0 1 1 0 1 0 ...
.
.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

1
0

0
1

0
0

1
0

Write <P> for CODE(P)

Want behavior of program to be
like the flipped diagonal, so it can’t
be in the list of all programs.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

The Halting Problem isn’t the only hard problem

• Can use the fact that the Halting Problem is
undecidable to show that other problems are
undecidable

General method:
Prove that if there were a program deciding B then there
would be a way to build a program deciding the Halting
Problem.

“B decidable Halting Problem decidable”
Contrapositive:

“Halting Problem undecidable B undecidable”
Therefore B is undecidable

A CSE 141 assignment

Students should write a Java program that:
– Prints “Hello” to the console

– Eventually exits

GradeIt, PracticeIt, etc. need to grade the
students.

How do we write that grading program?

We can’T: THIS IS IMPOSSIBLe!

A related undecidable problem

• HelloWorldTesting Problem:

– Input: CODE(Q) and x
– Output:

True if Q outputs “HELLO WORLD” on input x
False if Q does not output “HELLO WORLD” on input x

• Theorem: The HelloWorldTesting Problem is undecidable.

• Proof idea: Show that if there is a program T to decide
HelloWorldTesting then there is a program H to decide the
Halting Problem for code(P) and x.

A related undecidable problem

• Suppose there is a program T that solves the
HelloWorldTesting problem. Define program H that takes
input CODE(P) and x and does the following:
– Creates CODE(Q) from CODE(P) and x:

1) Store reference to System.out then redirect to a StringWriter
2) Call P(x)
3) Print “Hello World”

– Then runs T on input code(Q)

• If P halts on input x then Q prints HELLO WORLD and halts and so H
outputs true (because T outputs true on input CODE(Q))

• If P doesn’t halt on input x then Q won’t print anything since we removed
any other print statement from CODE(Q) so H outputs false

We know that such an H cannot exist. Therefore T cannot exist.

