CSE 311: Foundations of Computing

Lecture 25: Languages vs Representations: Limitations of Finite Automata and Regular Expressions

DFA

Exponential Blow-up in Simulating Nondeterminism

- In general the DFA might need a state for every subset of states of the NFA
 - Power set of the set of states of the NFA
 - *n*-state NFA yields DFA with at most 2^n states
 - We saw an example where roughly 2^n is necessary "Is the n^{th} char from the end a 1?"

The famous "P=NP?" question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms

Last time: DFAs ≡ NFAs ≡ Regular expressions

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Theorem: A language is recognized by a DFA (or NFA) if and only if it has a regular expression

You need to know this fact but you don't need to know and we won't ask you anything about the construction for the "only if" direction from DFA/NFA to regular expression.

Languages represented by DFA, NFAs, or regular expressions are called Regular Languages

Application of FSMs: Pattern matching

- Given
 - a string S of n characters
 - a pattern p of m characters
 - usually $m \ll n$
- Find
 - all occurrences of the pattern p in the string s
- Obvious algorithm:
 - try to see if p matches at each of the positions in s stop at a failed match and try matching at the next position: O(mn) running time.

Application of FSMs: Pattern Matching

- With DFAs can do this in O(m + n) time.
- Even more general idea in practice: implemented in regular expression pattern matchers like grep:
 - Convert regular expression pattern to an NFA
 - Start building the equivalent DFA from the NFA using the subset construction but do this "on the fly": only add arcs that are actually followed by the input text
- See Extra Credit problem on HW8 for some ideas of how to do it.

All of them?

Languages and Representations!

Languages and Representations!

DFAs Recognize Any Finite Language

Construct a DFA for each string in the language.

Then, put them together using the union construction.

Languages and Machines!

An Interesting Infinite Regular Language

L = { $x \in \{0, 1\}^*$: x has an equal number of substrings 01 and 10}.

L is infinite.

0, 00, 000, ...

L is regular. How could this be?

(It seems to be comparing counts and counting seems hard for DFAs.)

An Interesting Infinite Regular Language

L = { $x \in \{0, 1\}^*$: x has an equal number of substrings 01 and 10}.

L is infinite.

0, 00, 000, ...

L is regular. How could this be? It is just the set of binary strings that are empty or begin and end with the same character!

Languages and Representations!

$$\textbf{S} \rightarrow \epsilon$$
 | 0 | 1 | 0S0 | 1S1

Is the language of "Binary Palindromes" Regular?

Intuition (NOT A PROOF!):

- Q: What would a DFA need to keep track of to decide the language?
- A: It would need to keep track of the "first part" of the input in order to check the second part against it

...but there are an infinite # of possible first parts and we only have finitely many states.

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- Our goal is to show that M must be "confused"... we want to show that it "does the wrong thing".

How can a DFA be "wrong"?

- when it accepts or rejects a string it shouldn't.

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- Our goal is to show that M must be "confused"...
 we want to show that it "does the wrong thing" accepts or rejects a string it shouldn't.

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- We want to show: M accepts or rejects a string it shouldn't.

Key Idea 1: If two strings "collide" at any point, a DFA can no longer distinguish between them!

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- We want to show: M accepts or rejects a string it shouldn't.

Key Idea 1: If two strings "collide" at any point, a DFA can no longer distinguish between them!

Key Idea 2: Our machine M has a finite number of states which means if we have infinitely many strings, two of them must collide!

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- We want to show: M accepts or rejects a string it shouldn't.

We choose an INFINITE set **S** of "partial strings" (which we intend to complete later). It is imperative that for *every pair* of strings in our set there is an <u>"accept" completion</u> that the two strings DO NOT SHARE.

> 1_____ 01_____ 001_____ 0001_____

.

B = {binary palindromes} can't be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B. We show M accepts or rejects a string it shouldn't. Consider S={1, 01, 001, 0001, 00001, ...} = $\{0^n1 : n \ge 0\}$.

Key Idea 2: Our machine has a finite number of states which means if we have infinitely many strings, two of them must collide!

Suppose for contradiction that some DFA, M, recognizes B. We show M accepts or rejects a string it shouldn't. Consider S={1, 01, 001, 0001, 00001, ...} = $\{0^n 1 : n \ge 0\}$.

Since there are finitely many states in **M** and infinitely many strings in S, there exist strings $0^a 1 \in S$ and $0^b 1 \in S$ with $a \neq b$ that end in the same state of **M**.

SUPER IMPORTANT POINT: You do not get to choose what a and b are. Remember, we've just proven they exist...we have to take the ones we're given! **B** = {binary palindromes} can't be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B. We show M accepts or rejects a string it shouldn't. Consider S = $\{0^n 1 : n \ge 0\}$.

Since there are finitely many states in **M** and infinitely many strings in S, there exist strings $0^a 1 \in S$ and $0^b 1 \in S$ with $a \neq b$ that end in the same state of **M**.

SUPER IMPORTANT POINT: You do not get to choose what a and b are. Remember, we've just proven they exist...we have to take the ones we're given!

Suppose for contradiction that some DFA, M, accepts B.

We show M accepts or rejects a string it shouldn't.

Consider $S = \{0^n 1 : n \ge 0\}.$

Since there are finitely many states in M and infinitely many strings in S, there exist strings $0^a 1 \in S$ and $0^b 1 \in S$ with $a \neq b$ that end in the same state of M.

Now, consider appending **0**^a *to both strings.*

Key Idea 1: If two strings "collide" at any point, a DFA can no longer distinguish between them!

B = {binary palindromes} can't be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B. We show M accepts or rejects a string it shouldn't. Consider S = $\{0^n 1 : n \ge 0\}$.

Since there are finitely many states in M and infinitely many strings in S, there exist strings $0^a 1 \in S$ and $0^b 1 \in S$ with $a \neq b$ that end in the same state of M.

Now, consider appending 0^a to both strings.

Then, since $0^{a}1$ and $0^{b}1$ end in the same state, $0^{a}10^{a}$ and $0^{b}10^{a}$ also end in the same state, call it q. But then M must make a mistake: q needs to be an accept state since $0^{a}10^{a} \in B$, but then M would accept $0^{b}10^{a} \notin B$ which is an error.

B = {binary palindromes} can't be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B. We show M accepts or rejects a string it shouldn't. Consider S = $\{0^n 1 : n \ge 0\}$.

Since there are finitely many states in M and infinitely many strings in S, there exist strings $0^a 1 \in S$ and $0^b 1 \in S$ with $a \neq b$ that end in the same state of M.

Now, consider appending 0^a to both strings.

Then, since $0^{a}1$ and $0^{b}1$ end in the same state, $0^{a}10^{a}$ and $0^{b}10^{a}$ also end in the same state, call it q. But then M must make a mistake: q needs to be an accept state since $0^{a}10^{a} \in B$, but then M would accept $0^{b}10^{a} \notin B$ which is an error.

This is a contradiction, since we assumed that M recognizes B. Since M was arbitrary, there is no DFA that recognizes B.

Showing that a Language L is not regular

- **1.** "Suppose for contradiction that some DFA M recognizes L."
- 2. Consider an INFINITE set S of "partial strings" (which we intend to complete later). It is imperative that for *every pair* of strings in our set there is an <u>"accept" completion</u> that the two strings DO NOT SHARE.
- 3. "Since S is infinite and M has finitely many states, there must be two strings s_a and s_b in S for $s_a \neq s_b$ that end up at the same state of M."
- 4. Consider appending the (correct) completion t to each of the two strings.
- 5. "Since s_a and s_b both end up at the same state of M, and we appended the same string t, both $s_a t$ and $s_b t$ end at the same state q of M. Since $s_a t \in L$ and $s_b t \notin L$, M does not recognize L."
- 6. "Since M was arbitrary, no DFA recognizes L."

Prove $A = \{0^n 1^n : n \ge 0\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S =

Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M.

Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M.

Consider appending 1^a to both strings.

Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M.

Consider appending 1^a to both strings.

Note that $0^a1^a \in A$, but $0^b1^a \notin A$ since $a \neq b$. But they both end up in the same state of M, call it q. Since $0^a1^a \in A$, state q must be an accept state but then M would incorrectly accept $0^b1^a \notin A$ so M does not recognize A.

Since M was arbitrary, no DFA recognizes A.

Suppose for contradiction that some DFA, M, accepts P.

Let S =

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (n : n \ge 0) \}$. Since S is infinite and M has finitely many states, there must be two strings, (a and (b for some a \neq b that end in the same state in M.

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (n : n \ge 0) \}$. Since S is infinite and M has finitely many states, there must be two strings, (a and (b for some a \neq b that end in the same state in M.

Consider appending)^a to both strings.

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (n : n \ge 0) \}$. Since S is infinite and M has finitely many states, there must be two strings, (a and (b for some a \neq b that end in the same state in M.

Consider appending)^a to both strings.

Note that $(^{a})^{a} \in P$, but $(^{b})^{a} \notin P$ since $a \neq b$. But they both end up in the same state of M, call it q. Since $(^{a})^{a} \in P$, state q must be an accept state but then M would incorrectly accept $(^{b})^{a} \notin P$ so M does not recognize P.

Since M was arbitrary, no DFA recognizes P.

Showing that a Language L is not regular

- **1.** "Suppose for contradiction that some DFA M recognizes L."
- 2. Consider an INFINITE set S of "partial strings" (which we intend to complete later). It is imperative that for *every pair* of strings in our set there is an <u>"accept" completion</u> that the two strings DO NOT SHARE.
- 3. "Since S is infinite and M has finitely many states, there must be two strings s_a and s_b in S for $s_a \neq s_b$ that end up at the same state of M."
- 4. Consider appending the (correct) completion t to each of the two strings.
- 5. "Since s_a and s_b both end up at the same state of M, and we appended the same string t, both $s_a t$ and $s_b t$ end at the same state q of M. Since $s_a t \in L$ and $s_b t \notin L$, M does not recognize L."
- 6. "Since M was arbitrary, no DFA recognizes L."

- Suppose that for a language L, the set S is a largest set of "partial strings" with the property that for every pair s_a≠ s_b ∈ S, there is some string t such that one of s_at, s_bt is in L but the other isn't.
- If **S** is infinite then **L** is not regular
- If S is finite then the minimal DFA for L has precisely
 |S| states, one reached by each member of S.

BTW: There is another method commonly used to prove languages not regular called the Pumping Lemma that we won't use in this course. Note that it doesn't always work.