
CSE 311: Foundations of Computing

Lecture 24:  NFAs, Regular expressions, and NFA DFA



Last time: Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled 
by symbols (like DFA) but
– Not required to have exactly 1 edge out of each state 

labeled by each symbol--- can have 0 or >1

– Also can have edges labeled by empty string 

• Defn:  x is in the language recognized by an NFA if 
and only if x labels a path from the start state to 
some final state
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Last time: Three ways of thinking about NFAs

• Outside observer:  Is there a path labeled by x from 
the start state to some final state?  

• Perfect guesser: The NFA has input x and whenever 
there is a choice of what to do it magically guesses a 
good one (if one exists)

• Parallel exploration:  The NFA computation runs all 
possible computations on x step-by-step at the same 
time in parallel
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Last time: Compare with the smallest DFA
0,1

s3 s2 s1 s0
0,1 0,11



0,1

s3 s2 s1 s0
0,1 0,11

Last time: Parallel Exploration view of an NFA

Input string  0101100
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Theorem: For any set of strings (language) 
described by a regular expression, there is an 
NFA that recognizes .  

Proof idea:   Structural induction based on the 
recursive definition of regular expressions...

NFAs and regular expressions



Regular Expressions over 

• Basis:
– , are regular expressions

– a is a regular expression for any a  

• Recursive step:
– If A and B are regular expressions then so are:

(A  B)
(AB)
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Base Case

• Case :

• Case :

• Case a:



Base Case

• Case :

• Case :

• Case a:
a



Inductive Hypothesis

• Suppose that for some regular expressions
A and B there exist NFAs NA and NB such 
that NA recognizes the language given by A 
and NB recognizes the language given by B

NA NB



Inductive Step

Case (A B):

NA
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Inductive Step

Case (A B):
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Inductive Step

Case (AB):

NA NB



Inductive Step

Case (AB):

NA NB



Inductive Step

Case A*

NA



Inductive Step

Case A*

NA



Build an NFA for (01 1)*0



Solution

(01 1)*0
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NFAs and DFAs

Every DFA is an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?



NFAs and DFAs

Every DFA is an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?   No!

Theorem:  For every NFA there is a DFA that 
recognizes exactly the same language



Three ways of thinking about NFAs

• Outside observer:  Is there a path labeled by x from 
the start state to some final state?  

• Perfect guesser: The NFA has input x and whenever 
there is a choice of what to do it magically guesses a 
good one (if one exists)

• Parallel exploration:  The NFA computation runs all 
possible computations on x step-by-step at the same 
time in parallel



Conversion of NFAs to a DFAs

• Proof Idea:
– The DFA keeps track of ALL the states that the 

part of the input string read so far can reach in 
the NFA

– There will be one state in the DFA for each 
subset of states of the NFA that can be reached 
by some string
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Parallel Exploration view of an NFA
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Conversion of NFAs to a DFAs

New start state for DFA
– The set of all states reachable from the start 

state of the NFA using only edges labeled 

a,b,e,f
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Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of 
states of the NFA and each symbol s

– Add an edge labeled s to state corresponding to T, the 
set of states of the NFA reached by 

∙ starting from some state in S, then
∙ following one edge labeled by s, and
then following some number of edges labeled by 

– T will be  if no edges from S labeled s exist
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Conversion of NFAs to a DFAs

Final states for the DFA
– All states whose set contain some final state of 

the NFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Exponential Blow-up in Simulating Nondeterminism

• In general the DFA might need a state for every 
subset of states of the NFA
– Power set of the set of states of the NFA
– -state NFA yields DFA with at most states
– We saw an example where roughly is necessary

“Is the th char from the end a 1?”

• The famous “P=NP?” question asks whether a 
similar blow-up is always necessary to get rid 
of nondeterminism for polynomial-time 
algorithms



DFAs ≡ NFAs ≡ Regular expressions

We have shown how to build an optimal DFA for every 
regular expression

– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA

Theorem:  A language is recognized by a DFA (or NFA) 
if and only if it has a regular expression

You need to know this fact but we won’t ask you anything 
about the “only if” direction from DFA/NFA to regular 
expression.  For fun, we sketch the idea.  



Generalized NFAs 

• Like NFAs but allow

– Regular Expressions as edge labels
NFAs already have edges labeled or a

• An edge labeled by A can be followed by reading a 
string of input chars that is in the language 
represented by A

• Defn: A string x is accepted iff there is a path from 
start to final state labeled by a regular expression
whose language contains x



Starting from an NFA

Add new start state and final state

A

Then eliminate original states one by one, 
keeping the same language, until it looks 
like:

Final regular expression will be A



Only two simplification rules

• Rule 1:  For any two states q1 and q2 with parallel 
edges (possibly q1=q2), replace

• Rule 2: Eliminate non-start/final state q3 by 
replacing all

for every pair of states q1, q2 (even if q1=q2)

q1 q2

A

B
by A B

q1 q2

A
B

C AB*Cq1 q3 q2 q1 q2by



Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum
– Accept strings from {0,1,2}* where the digits 

mod 3 sum of the digits is 0
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Splicing out a state t1

Regular expressions to add to edges
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t0→t1→t0 :   10*2
t0→t1→t2 :   10*1
t2→t1→t0 :   20*2
t2→t1→t2 :   20*1
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Splicing out a state t1

Regular expressions to add to edges

t0 t2

0 20*1
2 10*1

t0→t1→t0 :   10*2
t0→t1→t2 :   10*1
t2→t1→t0 :   20*2
t2→t1→t2 :   20*1

0 10*2
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Splicing out state t2 (and then t0)

t0 t2
R1

R1:   0 10*2
R2:   2 10*1
R3:   1 20*2
R4:   0 20*1

R5:   R1 R2R4*R3

R4R2

R3

Final regular expression: R5*=
(0 10*2 (2 10*1)(0 20*1)*(1 20*2))*
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