
CSE 311: Foundations of Computing

Lecture 24: NFAs, Regular expressions, and NFA DFA

Last time: Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled
by symbols (like DFA) but
– Not required to have exactly 1 edge out of each state

labeled by each symbol--- can have 0 or >1

– Also can have edges labeled by empty string

• Defn: x is in the language recognized by an NFA if
and only if x labels a path from the start state to
some final state

s0 s2 s3s1

111

0,10,1

Last time: Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x from
the start state to some final state?

• Perfect guesser: The NFA has input x and whenever
there is a choice of what to do it magically guesses a
good one (if one exists)

• Parallel exploration: The NFA computation runs all
possible computations on x step-by-step at the same
time in parallel

001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0 1

0

0

00

Last time: Compare with the smallest DFA
0,1

s3 s2 s1 s0
0,1 0,11

0,1

s3 s2 s1 s0
0,1 0,11

Last time: Parallel Exploration view of an NFA

Input string 0101100

s3

0 1 0 1 1 0 0
s3

s1

s3

s2

s3

s0

s1

s3

s0

s2

s3 s3

s0

X

s3

s1

s2

X

Theorem: For any set of strings (language)
described by a regular expression, there is an
NFA that recognizes .

Proof idea: Structural induction based on the
recursive definition of regular expressions...

NFAs and regular expressions

Regular Expressions over 

• Basis:
– , are regular expressions

– a is a regular expression for any a  

• Recursive step:
– If A and B are regular expressions then so are:

(A  B)
(AB)

A*

Base Case

• Case :

• Case :

• Case a:

Base Case

• Case :

• Case :

• Case a:
a

Inductive Hypothesis

• Suppose that for some regular expressions
A and B there exist NFAs NA and NB such
that NA recognizes the language given by A
and NB recognizes the language given by B

NA NB

Inductive Step

Case (A B):

NA

NB

Inductive Step

Case (A B):

NA

NB

Inductive Step

Case (AB):

NA NB

Inductive Step

Case (AB):

NA NB

Inductive Step

Case A*

NA

Inductive Step

Case A*

NA

Build an NFA for (01 1)*0

Solution

(01 1)*0

0

0

1

1

NFAs and DFAs

Every DFA is an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?

NFAs and DFAs

Every DFA is an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that
recognizes exactly the same language

Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x from
the start state to some final state?

• Perfect guesser: The NFA has input x and whenever
there is a choice of what to do it magically guesses a
good one (if one exists)

• Parallel exploration: The NFA computation runs all
possible computations on x step-by-step at the same
time in parallel

Conversion of NFAs to a DFAs

• Proof Idea:
– The DFA keeps track of ALL the states that the

part of the input string read so far can reach in
the NFA

– There will be one state in the DFA for each
subset of states of the NFA that can be reached
by some string

0,1

s3 s2 s1 s0
0,1 0,11

Parallel Exploration view of an NFA

Input string 0101100

s3 s3 s3 s3 s3 s3 s3

0 1 0 1 1 0 0

s2 s1 s0

s2 s1 s0

s2 s1 s0

s3

X

X

Conversion of NFAs to a DFAs

New start state for DFA
– The set of all states reachable from the start

state of the NFA using only edges labeled

a,b,e,f

f

e

ba

NFA DFA

Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of
states of the NFA and each symbol s

– Add an edge labeled s to state corresponding to T, the
set of states of the NFA reached by

∙ starting from some state in S, then
∙ following one edge labeled by s, and
then following some number of edges labeled by

– T will be  if no edges from S labeled s exist

f

e

b c

d

g

1

1

1

1

b,e,f c,d,e,g1

Conversion of NFAs to a DFAs

Final states for the DFA
– All states whose set contain some final state of

the NFA

a,b,c,e
ce

ba

NFA
DFA

Example: NFA to DFA

c

a

b

0

0,1

1

0

NFA

DFA

Example: NFA to DFA

c

a

b

0

0,1

1

0

NFA

a,b

DFA

Example: NFA to DFA

c

a

b

0

0,1

1

0

NFA

a,b

DFA

0

c

1

Example: NFA to DFA

c

a

b

0

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

Example: NFA to DFA

c

a

b

0

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0



10

Example: NFA to DFA

c

a

b

0

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0



1

0,1

0

Example: NFA to DFA

c

a

b

0

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c



1

0,1

0

0

1

Example: NFA to DFA

c

a

b

0

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c



1

0,1

0

0

1

1
0

Exponential Blow-up in Simulating Nondeterminism

• In general the DFA might need a state for every
subset of states of the NFA
– Power set of the set of states of the NFA
– -state NFA yields DFA with at most states
– We saw an example where roughly is necessary

“Is the th char from the end a 1?”

• The famous “P=NP?” question asks whether a
similar blow-up is always necessary to get rid
of nondeterminism for polynomial-time
algorithms

DFAs ≡ NFAs ≡ Regular expressions

We have shown how to build an optimal DFA for every
regular expression

– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA

Theorem: A language is recognized by a DFA (or NFA)
if and only if it has a regular expression

You need to know this fact but we won’t ask you anything
about the “only if” direction from DFA/NFA to regular
expression. For fun, we sketch the idea.

Generalized NFAs

• Like NFAs but allow

– Regular Expressions as edge labels
NFAs already have edges labeled or a

• An edge labeled by A can be followed by reading a
string of input chars that is in the language
represented by A

• Defn: A string x is accepted iff there is a path from
start to final state labeled by a regular expression
whose language contains x

Starting from an NFA

Add new start state and final state

A

Then eliminate original states one by one,
keeping the same language, until it looks
like:

Final regular expression will be A

Only two simplification rules

• Rule 1: For any two states q1 and q2 with parallel
edges (possibly q1=q2), replace

• Rule 2: Eliminate non-start/final state q3 by
replacing all

for every pair of states q1, q2 (even if q1=q2)

q1 q2

A

B
by A B

q1 q2

A
B

C AB*Cq1 q3 q2 q1 q2by

Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum
– Accept strings from {0,1,2}* where the digits

mod 3 sum of the digits is 0

t0 t2

t1

0

0
0

1 1

1

2

22

Splicing out a state t1

Regular expressions to add to edges

t0 t2

t1

0

0

1 1

1

2

22

t0→t1→t0 : 10*2
t0→t1→t2 : 10*1
t2→t1→t0 : 20*2
t2→t1→t2 : 20*1

0

s

f

Splicing out a state t1

Regular expressions to add to edges

t0 t2

0 20*1
2 10*1

t0→t1→t0 : 10*2
t0→t1→t2 : 10*1
t2→t1→t0 : 20*2
t2→t1→t2 : 20*1

0 10*2

s

f

1 20*2

Splicing out state t2 (and then t0)

t0 t2
R1

R1: 0 10*2
R2: 2 10*1
R3: 1 20*2
R4: 0 20*1

R5: R1 R2R4*R3

R4R2

R3

Final regular expression: R5*=
(0 10*2 (2 10*1)(0 20*1)*(1 20*2))*

f

s

t0

R5 f

s

