Lecture 24: NFAs, Regular expressions, and NFA→DFA
Last time: Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state labeled by each symbol—can have 0 or >1
 - Also can have edges labeled by empty string ε
- **Defn:** x is in the language recognized by an NFA if and only if x labels a path from the start state to some final state.
Last time: Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x from the start state to some final state?

• Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)

• Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
Last time: Compare with the smallest DFA
Last time: Parallel Exploration view of an NFA

Input string 0101100

...
Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...
Regular Expressions over Σ

• **Basis:**
 – \emptyset, ε are regular expressions
 – a is a regular expression for any $a \in \Sigma$

• **Recursive step:**
 – If A and B are regular expressions then so are:

 $(A \cup B)$

 (AB)

 A^*
Base Case

• Case \emptyset:

• Case ε:

• Case a:
Base Case

- Case \emptyset:

- Case ε:

- Case a:
Inductive Hypothesis

• Suppose that for some regular expressions A and B there exist NFAs N_A and N_B such that N_A recognizes the language given by A and N_B recognizes the language given by B
Inductive Step

Case \((A \cup B)\):
Inductive Step

Case \((A \cup B)\):

\[N_A \]

\[N_B \]

Suppose \(x \in A \cup B\).
\[\Rightarrow x \text{ recognized by } N \]
Inductive Step

Case (AB):
Inductive Step

Case (AB):
Inductive Step

Case A*

\[N_A \]
Inductive Step

Case A*
Build an NFA for \((01 \cup 1)^*0\)
Solution

\[(01 \cup 1)^*0\]
NFAs and DFAs

Every DFA is an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?
NFAs and DFAs

Every DFA is an NFA
 – DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language
Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x from the start state to some final state?

• Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)

• Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
• Proof Idea:
 – The DFA keeps track of ALL the states that the part of the input string read so far can reach in the NFA
 – There will be one state in the DFA for each *subset* of states of the NFA that can be reached by some string
Parallel Exploration view of an NFA

Input string 0101100

s3 -> s2 -> s1 -> s0

0,1
1
0,1
0,1

s3
s3
s3
s3
s3
s3
s2
s2
s1
s0
s0
s0

0101100

X

X

X
Conversion of NFAs to a DFAs

New start state for DFA

- The set of all states reachable from the start state of the NFA using only edges labeled ε
Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of states of the NFA and each symbol s:

- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by:
 - starting from some state in S, then
 - following one edge labeled by s, and
 - then following some number of edges labeled by ε
- T will be \emptyset if no edges from S labeled s exist
Conversion of NFAs to a DFAs

Final states for the DFA

– All states whose set contain some final state of the NFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA
Example: NFA to DFA
Example: NFA to DFA

NFA

DFA
Exponential Blow-up in Simulating Nondeterminism

• In general the DFA might need a state for every subset of states of the NFA
 – Power set of the set of states of the NFA
 – n-state NFA yields DFA with at most 2^n states
 – We saw an example where roughly 2^n is necessary
 “Is the n^{th} char from the end a 1?”

• The famous “P=NP?” question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms
DFAs \equiv NFAs \equiv Regular expressions

We have shown how to build an optimal DFA for every regular expression

– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA

Theorem: A language is recognized by a DFA (or NFA) if and only if it has a regular expression

You need to know this fact but we won’t ask you anything about the “only if” direction from DFA/NFA to regular expression. For fun, we sketch the idea.
Generalized NFAs

• Like NFAs but allow
 – Regular Expressions as edge labels
 NFAs already have edges labeled ε or a
• An edge labeled by A can be followed by reading a string of input chars that is in the language represented by A
• Defn: A string x is accepted iff there is a path from start to final state labeled by a regular expression whose language contains x
Starting from an NFA

Add new start state and final state

Then eliminate original states one by one, keeping the same language, until it looks like:

Final regular expression will be A
Only two simplification rules

- **Rule 1:** For any two states \(q_1\) and \(q_2\) with parallel edges (possibly \(q_1=q_2\)), replace

 \[
 \begin{array}{c}
 q_1 \\
 \text{A} \\
 \text{B} \\
 q_2
 \end{array}
 \quad \text{by} \quad
 \begin{array}{c}
 q_1 \\
 \text{AUB} \\
 q_2
 \end{array}
 \]

- **Rule 2:** Eliminate non-start/final state \(q_3\) by replacing all

 \[
 \begin{array}{c}
 q_1 \\
 A \\
 B \\
 q_3 \\
 C \\
 q_2
 \end{array}
 \quad \text{by} \quad
 \begin{array}{c}
 q_1 \\
 \text{AB*C} \\
 q_2
 \end{array}
 \]

 for every pair of states \(q_1, q_2\) (even if \(q_1=q_2\)).
Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum
- Accept strings from \(\{0,1,2\}^* \) where the digits mod 3 sum of the digits is 0
Splicing out a state t_1

Regular expressions to add to edges

$t_0 \rightarrow t_1 \rightarrow t_0 : 10^*2$
$t_0 \rightarrow t_1 \rightarrow t_2 : 10^*1$
$t_2 \rightarrow t_1 \rightarrow t_0 : 20^*2$
$t_2 \rightarrow t_1 \rightarrow t_2 : 20^*1$
Splicing out a state \(t_1 \)

Regular expressions to add to edges

\[
\begin{align*}
 \text{t}_0 & \rightarrow \text{t}_1 \rightarrow \text{t}_0 : \quad 10^*2 \\
 \text{t}_0 & \rightarrow \text{t}_1 \rightarrow \text{t}_2 : \quad 10^*1 \\
 \text{t}_2 & \rightarrow \text{t}_1 \rightarrow \text{t}_0 : \quad 20^*2 \\
 \text{t}_2 & \rightarrow \text{t}_1 \rightarrow \text{t}_2 : \quad 20^*1
\end{align*}
\]
Splicing out state t_2 (and then t_0)

R₁: $0 \cup 10^*2$
R₂: $2 \cup 10^*1$
R₃: $1 \cup 20^*2$
R₄: $0 \cup 20^*1$

R₅: $R₁ \cup R₂R₄R₃$

Final regular expression: $R₅^* = (0 \cup 10^*2 \cup (2 \cup 10^*1)(0 \cup 20^*1)^*(1 \cup 20^*2))^*$