CSE 311: Foundations of Computing

Lecture 24: NFAs, Regular expressions, and NFA—DFA




Last time: Nondeterministic Finite Automata (NFA)

* Graph with start state, final states, edges labeled
by symbols (like DFA) but

— Not required to have exactly 1 edge out of each state
labeled by each symbol— can have O or >1

— Also can have edges labeled by empty strin@

 Defn: xis in the language recognized by an NFA if
and only if x labels a path from the start state to

_ dpatl!
some final state
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Last time: Three ways of thinking about NFAs

* Qutside observer: Is there a path labeled by x from
the start state to some final state?

* Perfect guesser: The NFA has input x and whenever

there is a choice of what to do it magically guesses a
good one (if one exists)

* Parallel exploration: The NFA computation runs all
possible computations on x step-by-step at the same
time in parallel
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Last time: Compare with the smallest DFA
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Last time: Parallel Exploration view of an NFA
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NFAs and regular expressions

Theorem: For any set of strings (language) A

described by a regular expression, there is an
NFA that recognizes A.

Proof idea: Structural induction based on the
recursive definition of regular expressions...



Regular Expressions over X

* Basis:
— (J, € are regular expressions
— a is a regular expression foranya € ~

* Recursive step:
— If A and B are regular expressions then so are:
(AUB) —
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Base Case

e Case U:

e Case &:

e Case a:



Base Case

e Case U:

e Case &:

e Case a:




Inductive Hypothesis

 Suppose that for some regular expressions
A and B there exist NFAs N, and Ng such
that N, recognizes the language given by A
and Ng recognizes the language given by B




Inductive Step

Case (A U B):
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Inductive Step
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Inductive Step

Case (AB):
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Inductive Step

Case (AB):
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Inductive Step

Case A*
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Inductive Step

Case A*




Build an NFA for (01 U1)*0




Solution

(01 U1)*0




NFAs and DFAs Re & Neh

Den & NED
Every DFA is an NFA

— DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?



NFAs and DFAs

Every DFA is an NFA
— DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that
recoghizes exactly the same language




Three ways of thinking about NFAs

* Qutside observer: Is there a path labeled by x from
the start state to some final state?

* Perfect guesser: The NFA has input x and whenever
there is a choice of what to do it magically guesses a
good one (if one exists)

* Parallel exploration: The NFA computation runs all
possible computations on x step-by-step at the same
time in parallel



Conversion of NFAs to a DFAs

 Proof Idea:

— The DFA keeps track of ALL the states that the
part of the input string read so far can reach in
the NFA

— There will be one state in the DFA for each
subset of states of the NFA that can be reached

by some string
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Parallel Exploration view of an NFA
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Conversion of NFAs to a DFAs

New start state for DFA

— The set of all states reachable from the start
state of the NFA using only edges labeled ¢

NFA DFA



Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of

states of the NFA and each symbol s
— Add an edge labeled s to state corresponding to T, the
set of states of the NFA reached by
- starting from some state in S, then
- following one edge labeled by s, and
then following some number of edges labeled by €
— T will befgj no edges from S labeled s exist




Conversion of NFAs to a DFAs

Final states for the DFA

— All states whose set contain some final state of
the NFA

DFA



Example: NFA to DFA

DFA



Example: NFA to DFA

)
-

DFA



Example: NFA to DFA




Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA




Example: NFA to DFA




Example: NFA to DFA




Exponential Blow-up in Simulating Nondeterminism

* |In general the DFA might need a state for every
subset of states of the NFA

— Power set of the set of states of the NFA

— n-state NFA yields DFA with at most 2" states

— We saw an example where roughly 2™ is necessary
“Is the nt" char from the end a 1?”

* The famous ‘P=NP?” question asks whether a
similar blow-up Is always necessary to get rid
of nondeterminism for polynomial-time
algorithms



DFAs = NFAs = Regular expressions

We have shown how to build an optimal DFA for every
regular expression

— Build NFA
— Convert NFA to DFA using subset construction
— Minimize resulting DFA

Theorem: A language is recognized by a DFA (or NFA)
if and only if it has a regular expression

You need to know this fact but we won’t ask you anything
about the “only if” direction from DFA/NFA to regular
expression. For fun, we sketch the idea.



Generalized NFAs

 Like NFAs but allow

— Regular Expressions as edge labels

NFAs already have edges Iabeledg ora

* An edge labeled by A can be followed by reading a
string of input chars that is in the language
represented by A

 Defn: A string x is accepted iff there is a path from

start to final state labeled by a regular expression
whose language contains x



Starting from an NFA

Add new start state and final state
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Then eliminate original states one by one,

keeping the same language, until it looks

like:
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Final regular expression will be A



Only two simplification rules

* Rule 1: For any two states q, and q, with parallel
edges (possibly q,=q,), replace
A

* Rule 2: Eliminate non-start/final state q4 by
replacing all

(@B —5(®%) by (G HEEEH()

for every pair of states q1, q, (even if q,=q,)



Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

— Accept strings from {0,1,2}* where the digits
mod 3 sum of the digits is 0




Splicing out a state t,

Regular expressions to add to edges

t>t, Sty 1 10%2
t,>t,>t, 1 10*1
t,>t, >t 2072
t,>t,>t,: 20*1




Splicing out a state t,

Regular expressions to add to edges

t,2t 21
t,ot 2t
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Splicing out state t, (and then t,)

: 0U 10*2
: 2U 10*1
1U 20%*2
O U 20*1

Re: R, UR,R,*R, "GD\
R

€
€
Clo—CO
Final regular expression: R;*=

(OU 10*2 U (2 U 10*1)(0 U 20*1)*(1 U 20*2))*
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