
CSE 311: Foundations of Computing

Lecture 21:  Directed Graphs & Finite State Machines



Last Class: Relations & Composition

Let A and B be sets,  
A binary relation from A to B is a subset of A  B

Let A be a set,
A binary relation on A is a subset of A  A

The composition of relation and ,  is the 
relation defined by:

= { (a, c) |  b such that (a,b) and (b,c) }



Last Class: Powers of a Relation

“the equality relation on ”

for  



Last Class: Directed Graphs

Path:  v0, v1, …, vk with each (vi, vi+1) in E

Simple Path:  none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges, ordered pairs of vertices 



Last Class: Representation of Relations

Directed Graph Representation (Digraph)

{(a, b),  (a, a),  (b, a), (c, a),  (c, d),  (c, e) (d, e) }
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Last Class: Relational Composition using Digraphs

If and 
Compute 

1

3

2 1

3

2



Paths in Relations and Graphs

Let be a relation on a set .  There is a path of 
length from a to b in the digraph for 
if and only if (a,b) 

Def: The length of a path in a graph is the number of 
edges in it (counting repetitions if edge used > once).



Connectivity In Graphs

Let be a relation on a set .  The connectivity
relation consists of the pairs ( , ) such that there is 
a path from to in .

Note:  Rosen text uses the wrong definition of this quantity.
What the text defines (ignoring k=0) is usually called R+

Def: Two vertices in a graph are connected iff there is a 
path between them.



How Properties of Relations show up in Graphs

Let R be a relation on A.

R is reflexive iff (a,a)  R for every a  A

R is symmetric iff (a,b)  R implies (b, a) R

R is transitive iff (a,b) R and (b, c) R implies (a, c)  R

R is antisymmetric iff (a,b)  R and a  b implies (b,a) R



How Properties of Relations show up in Graphs

Let R be a relation on A.

R is reflexive iff (a,a)  R for every a  A

R is symmetric iff (a,b)  R implies (b, a) R

R is transitive iff (a,b) R and (b, c) R implies (a, c)  R

R is antisymmetric iff (a,b)  R and a  b implies (b,a) R

at every node

or



Transitive-Reflexive Closure

Add the minimum possible number of edges to make the 
relation transitive and reflexive.

The transitive-reflexive closure of a relation is the 
connectivity relation *



Transitive-Reflexive Closure

Relation with the minimum possible number of extra edges to 
make the relation both transitive and reflexive.

The transitive-reflexive closure of a relation is the 
connectivity relation *



-ary Relations

Let 𝟏 𝟐 be sets.  An -ary relation on 
these sets is a subset of 𝟏 𝟐  𝒏.



Relational Databases

Student_Name ID_Number Office GPA

Knuth 328012098 022 4.00

Von Neuman 481080220 555 3.78

Russell 238082388 022 3.85

Einstein 238001920 022 2.11

Newton 1727017 333 3.61

Karp 348882811 022 3.98

Bernoulli 2921938 022 3.21

STUDENT



Relational Databases

Student_Name ID_Number Office GPA Course

Knuth 328012098 022 4.00 CSE311

Knuth 328012098 022 4.00 CSE351

Von Neuman 481080220 555 3.78 CSE311

Russell 238082388 022 3.85 CSE312

Russell 238082388 022 3.85 CSE344

Russell 238082388 022 3.85 CSE351

Newton 1727017 333 3.61 CSE312

Karp 348882811 022 3.98 CSE311

Karp 348882811 022 3.98 CSE312

Karp 348882811 022 3.98 CSE344

Karp 348882811 022 3.98 CSE351

Bernoulli 2921938 022 3.21 CSE351

What’s not so nice?

STUDENT



Relational Databases

ID_Number Course

328012098 CSE311

328012098 CSE351

481080220 CSE311

238082388 CSE312

238082388 CSE344

238082388 CSE351

1727017 CSE312

348882811 CSE311

348882811 CSE312

348882811 CSE344

348882811 CSE351

2921938 CSE351Better

Student_Name ID_Number Office GPA

Knuth 328012098 022 4.00

Von Neuman 481080220 555 3.78

Russell 238082388 022 3.85

Einstein 238001920 022 2.11

Newton 1727017 333 3.61

Karp 348882811 022 3.98

Bernoulli 2921938 022 3.21

STUDENT TAKES



Database Operations: Projection

Find all offices:  
Office

022

555

333

Find offices and GPAs:

Office GPA

022 4.00

555 3.78

022 3.85

022 2.11

333 3.61

022 3.98

022 3.21



Database Operations: Selection

Find students with GPA > 3.9 : σGPA>3.9(STUDENT)

Student_Name ID_Number Office GPA

Knuth 328012098 022 4.00

Karp 348882811 022 3.98

Retrieve the name and GPA for students with GPA > 3.9:
ΠStudent_Name,GPA(σGPA>3.9(STUDENT))

Student_Name GPA

Knuth 4.00

Karp 3.98



Database Operations: Natural Join

Student_Name ID_Number Office GPA Course

Knuth 328012098 022 4.00 CSE311

Knuth 328012098 022 4.00 CSE351

Von Neuman 481080220 555 3.78 CSE311

Russell 238082388 022 3.85 CSE312

Russell 238082388 022 3.85 CSE344

Russell 238082388 022 3.85 CSE351

Newton 1727017 333 3.61 CSE312

Karp 348882811 022 3.98 CSE311

Karp 348882811 022 3.98 CSE312

Karp 348882811 022 3.98 CSE344

Karp 348882811 022 3.98 CSE351

Bernoulli 2921938 022 3.21 CSE351

Student Takes



Selecting strings using labeled graphs as “machines”



Finite State Machines

“Start 
here”

“If I get this symbol, follow the 
arrow…”

The circles are called “states”
We’re only in a single state at 
any point in time…

The “double circle” means “the 
input is good if it ends here”



Which strings does this machine say are OK?



Which strings does this machine say are OK?

The set of all binary 
strings that end in 0



Finite State Machines

• States

• Transitions on input symbols

• Start state and final states

• The “language recognized” by the machine is the 
set of strings that reach a final state from the start

s0 s2 s3s1
111

0,1

0

0

0Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3



Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

Finite State Machines

• Each machine designed for strings over some 
fixed alphabet .

• Must have a transition defined from each state for 
every symbol in .

s0 s2 s3s1
111

0,1

0

0

0



Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

What language does this machine recognize?

s0 s2 s3s1
111

0,1

0

0

0



Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

What language does this machine recognize?

s0 s2 s3s1
111

0,1

0

0

0

The set of all binary strings that contain 111 ( )
OR don’t end in a 1 ( )



Applications of FSMs (a.k.a. Finite Automata)

• Implementation of regular expression matching in 
programs like grep

• Control structures for sequential logic in digital 
circuits

• Algorithms for communication and cache-
coherence protocols

– Each agent runs its own FSM

• Design specifications for reactive systems

– Components are communicating FSMs



Applications of FSMs (a.k.a. Finite Automata)

• Formal verification of systems

– Is an unsafe state reachable?

• Computer games

– FSMs provide worlds to explore

• Minimization algorithms for FSMs can be 
extended to more general models used in

– Text prediction

– Speech recognition



Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

s0 s1



Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

s0 s1

2 0,10,1

2



Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0

s0 s1

t0 t2

t1

2 0,10,1

2



Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0

s0 s1

t0 t2

t1

2 0,10,1

2

0

0

0

1 1

1

2 2

2



What language does this machine recognize?

s0

s2 s3

s1

1

1

1

1

0

0

0

0



What language does this machine recognize?

s0

s2 s3

s1

1

1

1

1

0

0

0

0

The set of all binary strings with # of 1’s # of 0’s (mod 2)
(both are even or both are odd).



Strings over {0,1,2} w/ even number of 2’s and mod 3 sum 0

s0t0 s1t0

s0t1

s0t2 s1t1

s1t2



s0t0 s1t0

s0t1

s0t2 s1t1

s1t2

2

2

2

2
2

2

1

1

1

1

1

1

0

0 0

0 0

0

Strings over {0,1,2} w/ even number of 2’s and mod 3 sum 0


